Capacitated Center Problems with Two-Sided Bounds and Outliers

  • Hu Ding
  • Lunjia Hu
  • Lingxiao HuangEmail author
  • Jian Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10389)


In recent years, the capacitated center problems have attracted a lot of research interest. Given a set of vertices V, we want to find a subset of vertices S, called centers, such that the maximum cluster radius is minimized. Moreover, each center in S should satisfy some capacity constraint, which could be an upper or lower bound on the number of vertices it can serve. Capacitated k-center problems with one-sided bounds (upper or lower) have been well studied in previous work, and a constant factor approximation was obtained.

We are the first to study the capacitated center problem with both capacity lower and upper bounds (with or without outliers). We assume each vertex has a uniform lower bound and a non-uniform upper bound. For the case of opening exactly k centers, we note that a generalization of a recent LP approach can achieve constant factor approximation algorithms for our problems. Our main contribution is a simple combinatorial algorithm for the case where there is no cardinality constraint on the number of open centers. Our combinatorial algorithm is simpler and achieves better constant approximation factor compared to the LP approach.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, G., Panigrahy, R., Feder, T., Thomas, D., Kenthapadi, K., Khuller, S., Zhu, A.: Achieving anonymity via clustering. ACM Trans. Algorithms 6(3), 49:1–49:19 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ahmadian, S., Swamy, C.: Approximation algorithms for clustering problems with lower bounds and outliers (2016). arXiv preprint arxiv:1608.01700
  3. 3.
    An, H.C., Bhaskara, A., Chekuri, C., Gupta, S., Madan, V., Svensson, O.: Centrality of trees for capacitated k-center. Mathematical Programming 154(1–2), 29–53 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k-median and facility location problems. SIAM Journal on Computing 33(3), 544–562 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barilan, J., Kortsarz, G., Peleg, D.: How to allocate network centers. Journal of Algorithms 15(3), 385–415 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Charikar, M., Guha, S.: Improved combinatorial algorithms for facility location problems. SIAM Journal on Computing 34(4), 803–824 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation algorithm for the k-median problem. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM (1999)Google Scholar
  8. 8.
    Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location problems with outliers. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 642–651. Society for Industrial and Applied Mathematics (2001)Google Scholar
  9. 9.
    Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems. Algorithmica 75(1), 27–52 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cygan, M., Hajiaghayi, M., Khuller, S.: Lp rounding for k-centers with non-uniform hard capacities. In: Proceedings of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pp. 273–282. IEEE Computer Society (2012)Google Scholar
  11. 11.
    Dick, T., Li, M., Pillutla, V.K., White, C., Balcan, M.F., Smola, A.: Data driven resource allocation for distributed learning (2015). arXiv preprint arxiv:1512.04848
  12. 12.
    Ding, H.: Balanced \( k \)-center clustering when \( k \) is a constant (2017). arXiv preprint arxiv:1704.02515
  13. 13.
    Ene, A., Har-Peled, S., Raichel, B.: Fast clustering with lower bounds: No customer too far, no shop too small (2013). arXiv preprint arxiv:1304.7318
  14. 14.
    Fernandes, C.G., Paula, S.P., Pedrosa, L.L.C.: Improved approximation algorithms for capacitated fault-tolerant k-center. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN 2016. LNCS, vol. 9644, pp. 441–453. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49529-2_33 CrossRefGoogle Scholar
  15. 15.
    Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical Computer Science 38, 293–306 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. Journal of Algorithms 31(1), 228–248 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Mathematics of Operations Research 10(2), 180–184 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location problems. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 731–740. ACM (2002)Google Scholar
  19. 19.
    Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and lagrangian relaxation. Journal of the ACM (JACM) 48(2), 274–296 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Khuller, S., Sussmann, Y.J.: The capacitated k-center problem. SIAM Journal on Discrete Mathematics 13(3), 403–418 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kociumaka, T., Cygan, M.: Constant factor approximation for capacitated k-center with outliers (2014). arXiv preprint arxiv:1401.2874
  22. 22.
    Korupolu, M.R., Plaxton, C.G., Rajaraman, R.: Analysis of a local search heuristic for facility location problems. Journal of Algorithms 37(1), 146–188 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Li, J., Yi, K., Zhang, Q.: Clustering with diversity. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 188–200. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14165-2_17 CrossRefGoogle Scholar
  24. 24.
    Li, S.: A 1.488 approximation algorithm for the uncapacitated facility location problem. Information and Computation 222, 45–58 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. SIAM Journal on Computing 45(2), 530–547 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(05), 557–570 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computer Science and EngineeringMichigan State UniversityEast LansingUSA
  2. 2.Institute for Interdisciplinary Information SciencesTsinghua UniversityBeijingChina

Personalised recommendations