Replica Placement on Bounded Treewidth Graphs

  • Anshul Aggarwal
  • Venkatesan T. Chakaravarthy
  • Neelima Gupta
  • Yogish Sabharwal
  • Sachin Sharma
  • Sonika Thakral
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10389)

Abstract

We consider the replica placement problem: given a graph and a set of clients, place replicas on a minimum set of nodes of the graph to serve all the clients; each client is associated with a request and maximum distance that it can travel to get served; there is a maximum limit (capacity) on the amount of request a replica can serve. The problem falls under the general framework of capacitated set cover. It admits an \(O(\log n)\)-approximation and it is NP-hard to approximate within a factor of \(o(\log n)\). We study the problem in terms of the treewidth t of the graph and present an O(t)-approximation algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arora, S., Chakaravarthy, V., Gupta, K., Gupta, N., Sabharwal, Y.: Replica placement on directed acyclic graphs. In: Raman, V., Suresh, S. (eds.) Proceedings of the 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS), pp. 213–225 (2014)Google Scholar
  2. 2.
    Arora, S., Chakaravarthy, V., Gupta, N., Mukherjee, K., Sabharwal, Y.: Replica placement via capacitated vertex cover. In: Seth, A., Vishnoi, N., (eds.) Proceedings of the 33rd International Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pp. 263–274 (2013)Google Scholar
  3. 3.
    Benoit, A., Larchevêque, H., Renaud-Goud, P.: Optimal algorithms and approximation algorithms for replica placement with distance constraints in tree networks. In: Proceedings of the 26th IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 1022–1033 (2012)Google Scholar
  4. 4.
    Bodlaender, H., Koster, A.: Combinatorial optimization on graphs of bounded treewidth. Computer Journal 51(3), 255–269 (2008)CrossRefGoogle Scholar
  5. 5.
    Chuzhoy, J., Naor, J.: Covering problems with hard capacities. SIAM Journal of Computing 36(2), 498–515 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Optimal allocation of electronic content: I. Cidon, S. Kutten, and R. Soffer. Computer Networks 40, 205–218 (2002)CrossRefGoogle Scholar
  7. 7.
    Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45(4), 634–652 (1998)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kalpakis, K., Dasgupta, K., Wolfson, O.: Optimal placement of replicas in trees with read, write, and storage costs. IEEE Transactions on Parallel and Distributed Systems 12, 628–637 (2001)CrossRefGoogle Scholar
  9. 9.
    Kao, M., Chen, H., Lee, D.: Capacitated domination: Problem complexity and approximation algorithms. Algorithmica 72(1), 1–43 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Saha, B., Khuller, S.: Set cover revisited: hypergraph cover with hard capacities. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 762–773. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31594-7_64 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anshul Aggarwal
    • 1
  • Venkatesan T. Chakaravarthy
    • 2
  • Neelima Gupta
    • 1
  • Yogish Sabharwal
    • 2
  • Sachin Sharma
    • 1
  • Sonika Thakral
    • 1
  1. 1.University of DelhiDelhiIndia
  2. 2.IBM ResearchDelhiIndia

Personalised recommendations