Advertisement

Laser Based Standoff Techniques: A Review on Old and New Perspective for Chemical Detection and Identification

  • Pasqualino GaudioEmail author
Chapter
Part of the Terrorism, Security, and Computation book series (TESECO)

Abstract

The active remote sensing standoff detection is a very interesting methodology that could be used with the aim to reduce the risk for the health, in the case of intentional (terrorism or war) or accidental (natural or incident event) diffusion in the air of chemical agents. At the present day, there are several laser-based methodologies that could be applied for this aim but the future developments seem to be the integration of two methodologies. The integration of two methodologies could guarantee the development of a network of low-cost laser based systems for chemical detection integrated with a more sophisticated layout able to identify the nature of a release that could be used only in the case that the anomalies are detected. The requirements for standoff detection and identification are discussed in this paper, including the technologies and some examples for chemical traces detection and identification. The paper will include novel techniques and tools not tested yet in operative environments and the preliminary results will be presented.

Keywords

Remote sensing Lidar Standoff system Detection chemical agent Dial Identification chemical agent 

Notes

Acknowledgements

The Author is very grateful to Dr. Stefano Parracino for the Figs. 1, 2, 3, 4, 7, and 8 provided by his PhD thesis.

References

  1. 1.
    Wallin, S., Pettersson, A., Ostmark, H., Hobro, A.: Laser Based Standoff Detection of Explosive: a Critical Review. Anal. Bioanal. Chem. 395, 259–274 (2009).CrossRefGoogle Scholar
  2. 2.
    FLIR System, http://www.flir.it
  3. 3.
    Sasic, S., Ozaki, Y.: Raman, Infrared, and Near-Infrared Chemical Imaging. Wiley (2010).Google Scholar
  4. 4.
    Goyal, A.K., Myers, T.R.: Active Mid-Infrared Reflectometry and Hyper Spectral Imaging. Laser-Based Optical Detection of Explosives. CRC Press. 168–212(2015).Google Scholar
  5. 5.
    Deutsch, E.R., Kotidis, P., Zhu, N., Goyal, A.K., Ye, J., Mazurenko, A., Norman, M., Zafiriou, K., Baier, M., Connors, R.: Active and Passive infrared Spectroscopy for the Detection of Environmental Threats. Proc. SPIE. 9106, 91060A (2014).CrossRefGoogle Scholar
  6. 6.
    Thériault, J.M., Puckrin, E., Hancock, J., Lecavalier, P., Jackson Lepage, C., Jensen, J.O.: Passive Standoff Detection of Chemical Warfare Agents on Surfaces. Appl. Opt. 43, 5870–5885 (2004)CrossRefGoogle Scholar
  7. 7.
    Lewis, I.R., Daniel Jr., N.W., Chaffin, N.C., Griffiths, P.R., Tungol, M.W. Raman spectroscopic studies of explosive materials: towards a field able explosives detector, Spectrochim. Acta A Mol. Biomol. Spectrosc. 51, p. 1985–2000 (1995).CrossRefGoogle Scholar
  8. 8.
    Parracino, S.,Richetta, M., Gelfusa, M., Malizia, A., Bellecci, C., De Leo, L., Perrimezzi, C., Fin, A., Forin, M., Giappicucci, F., Grion, M., Marchese, G., Gaudio, P.: Real-Time Vehicle Missions Monitoring Using a Compact LIDAR System and Conventional Instruments: First Results of an Experimental Campaign in a Suburban Area in Southern Italy. Opt. Eng. 55, 103107 (2016).CrossRefGoogle Scholar
  9. 9.
    Bellecci, C., Francucci, M., Gaudio, P., Gelfusa, M., Martellucci, S., Richetta, M., LoFeudo, T.: Application of a CO2 Dial System for Infrared Detection of Forest Fire and Reduction of False Alarm.Appl. Phys. B. 87, 373–378 (2007).CrossRefGoogle Scholar
  10. 10.
    Deutsch, E., Haibach, F., Mazurenko, A., Williams, B., Hulet, M., Miles, R., Goode, M.: Identification of CWAs Using Widely-Tunable Quantum Cascade Lasers. Proc. Chem. Biol. Defense Sci. Technol. Conf.(2011)Google Scholar
  11. 11.
    Goyal, A.K., Kotidis, P., Deutsch, E.R., Zhu, N., Norman, M., Ye, J., Zafiriou, K., Mazurenko, A.: Detection of chemical clouds using widely tunable quantum cascade lasers. Proc. SPIE. 9455, 94550L (2015).CrossRefGoogle Scholar
  12. 12.
    Spuler, S.M., Repasky, K.S., Morley, B., Moen, D., Hayman, M., Nehrir, A.R.: Field-Deployable diode Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor. Atmos. Meas. Tech. 8, 1073–1087 (2015).Google Scholar
  13. 13.
    Fiocco, G., Smullin, L.D.: Detection of Scattering Layers in the Upper Atmosphere (60–140km) by Optical Radar. Nature. 199, 1275–1276 (1963).CrossRefGoogle Scholar
  14. 14.
    Measures, R.M.: Laser Remote Sensing – Fundamentals and Applications. Wiley (1984).Google Scholar
  15. 15.
    Del Guasta, M.: Daily Cycles in Urban Aerosol Observed in Florence by Means of an Automatic 532–1064 nm LIDAR. Atm. Env. 36, 2853–2865 (2002).CrossRefGoogle Scholar
  16. 16.
    Mazzoleni, C., Kuhns, H.D., Moosmüller, H.: Monitoring Automotive Particulate Matter Emissions with LIDAR: A Review. Remote Sens. 2, 1077–1119 (2010)CrossRefGoogle Scholar
  17. 17.
    Likar, K., Eichinger, V.: Monitoring of the Particles Above the Unpaved Road by Lidar Technique. GLOBAL NEST J. 13, 309–316 (2011)Google Scholar
  18. 18.
    He, T.Y., Stanič, S., Gao, F., Bergant, K., Veberič, D., Song, X.Q., Dolžan, A.: Tracking of Urban Aerosols Using Combined LIDAR-Based Remote Sensing and Ground-Based Measurements. Atmos. Meas. Tech. 5, 891–900 (2012).CrossRefGoogle Scholar
  19. 19.
    Mei, L., Brydegaard, M.: Atmospheric Aerosol Monitoring by an Elastic Scheimpflug Lidar System. Opt. Exp. 23, A1613-A1628 (2015).CrossRefGoogle Scholar
  20. 20.
    Bösenberg, J.: EARLINET: A European Aerosol Research Lidar Network. In Proc. 20th International Laser Radar Conference (IPSL) (2000).Google Scholar
  21. 21.
    Cuomo, V., Di Girolamo, P., Esposito, F., Pappalardo, G., Serio, C., Spinelli, N., ... Bellecci, C.: The LITE Correlative Measurements Campaign in Southern Italy: Preliminary Results. Appl. Phys. B. 64, 553–559 (1997).CrossRefGoogle Scholar
  22. 22.
    Andreucci, F., Arbolino, M.V., Sozzi, R.: Lidar Utilisation for Industrial Stack Plume Automatic Tracking. Il Nuovo Cimento C. 14, 453–462(1991).CrossRefGoogle Scholar
  23. 23.
    Andreucci, F., Arbolino, M.V.: A study on forest fire automatic detection systems 1. Il Nuovo Cimento C. 16, 35–50, (1993).CrossRefGoogle Scholar
  24. 24.
    Andreucci, F., Arbolino, M.V.: A study on forest fire automatic detection systems 2. Il Nuovo Cimento C. 16, 51–65, (1993).CrossRefGoogle Scholar
  25. 25.
    Utkin, A.B., Lavrov, A.V., Costa, L., Simões, F., Vilar, R.: Detection of Small Forest Fires by Lidar. Appl. Phys. B. 74, 77–83 (2002).Google Scholar
  26. 26.
    Bellecci, C., De Leo, L., Gaudio, P., Gelfusa, M., Lo Feudo, T., Martellucci, S., Richetta, M.: Reduction of False Alarms in Forest Fire Surveillance Using Water Vapour Concentration Measurements. Opt. Laser Technol. 41, 374–379 (2009).CrossRefGoogle Scholar
  27. 27.
    Lavrov, A., Utkin, A.B., Vilar, R., Fernandez, A.: Application of Lidar in Ultraviolet, visible and Infrared Range for Early Forest Fire Detection. Appl. Phys. B. 76, 87–95 (2003)CrossRefGoogle Scholar
  28. 28.
    Weitkamp, C.: Lidar Range-Resolved Optical Remote Sensing of the Atmosphere. Springer. (2005).Google Scholar
  29. 29.
    Kovalev, V., Eichenger, W.E.: Elastic Lidar, Theory, Practice and Analysis Methods. Wiley. (2004).CrossRefGoogle Scholar
  30. 30.
    Reichardt, J., Reichardt, S.: Determination of Cloud Effective Particle Size From the Multiple Scattering Effect on Lidar Integration-Method Temperature Measurements. Appl. Opt. 45, 2796–2804 (2006).CrossRefGoogle Scholar
  31. 31.
    Berkoff, T., Welton, E., Campbell, J., Valencia, S., Spinhirne, J., Tsay, S.C., Holben, B.: Observations of Aerosols Using the Micro-Pulse Lidar NETwork (MPLNET). Proceedings of IEEE International Geoscience and Remote Sensing Symposium. 3, 2208–2211 (2004).Google Scholar
  32. 32.
    Uchino, O., Tokunaga, M., Maeda, M., Miyazoe, Y.: Differential-Absorption-Lidar Measurement of Tropospheric Ozone with Excimer-Raman Hybrid Laser. Opt. Lett. 8, 347–349 (1983).CrossRefGoogle Scholar
  33. 33.
    Vaughan, G., Wareing, D.P., Pepler, S.J., Thomas, L., Mitev, V.: Atmospheric Temperature Measurements Made by Rotational Raman Scattering. Appl. Opt. 32, 2758–2764 (1993)CrossRefGoogle Scholar
  34. 34.
    Mikkelsen, T., Mann, J., Courtney, M., Sjholm, M.: Wand scanner: 3-D Wind and Turbulence Measurements From Three Steerable Doppler Lidars. IOP Conf. Ser. Earth Environ. Sci. 1, 012018 (2008)CrossRefGoogle Scholar
  35. 35.
    McClung, F.J., Hellarth, R.W.: Giant Optical Pulsations From Ruby. J. Appl. Phys. 33, 828 (1962).CrossRefGoogle Scholar
  36. 36.
    Reichardt, J., Wandinger, U., Serwazi, M., Weitkamp, C.: Combined Raman Lidar for Aerosol, Ozone, and Moisture Measurements. Opt. Eng. 35, 1457–1465 (1996)CrossRefGoogle Scholar
  37. 37.
    Schafer, R.W.: What Is a Savitzky-Golay Filter? IEEE Signal Processing Magazine 28, 111–117 (2011).CrossRefGoogle Scholar
  38. 38.
    Sumnicht, G.K., McGee, T.J., Twigg, L., Gross, M., Beyerle, G.: Savitzky-Golay Filtering for Ozone Retrieval and Vertical Resolution Algorithm Optimization. J. Opt. Soc. Am. (1999).Google Scholar
  39. 39.
    Poreh, D., Fiorani, L.: Software for Analyzing and Visualizing Laser Remote Sensing (LIDAR) Data. J. Optoelectron. Adv. M. 12, 1231–1236 (2010).Google Scholar
  40. 40.
    Azadbakht, M., Fraser, C.S., Zhang, C., Leach, J.: A Signal Denoising Method for Full-Wave Form LIDAR Data. Proceedings of the ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, Antalya, Turkey, 11–13 (2013).Google Scholar
  41. 41.
    Iarlori, M., Madonna, F., Rizi, V., Trickl, T., Amodeo, A.: Effective Resolution Concepts for Lidar Observations. Atmos. Meas. Tech. 8, 5157–5176, (2015).CrossRefGoogle Scholar
  42. 42.
    Gaudio, P., Gelfusa, M., Richetta, M.: Preliminary Results of a Lidar-Dial Integrated System for the Automatic Detection of Atmospheric Pollutants. Proc. SPIE. 8534, 853404 (2012).CrossRefGoogle Scholar
  43. 43.
    Saleh, B.E.A., Teich, M.C.: Semiconductor Photodetectors. Fundamentals of Photonics. Wiley. (1991).Google Scholar
  44. 44.
    Enteper le Nuovetecnologiel‘Energia e l’Ambiente – ENEA, http://www.enea.it/
  45. 45.
    Klett, J.D.: Stable Analytical Inversion Solution for Processing Lidar Returns. Appl. Opt. 20, 211–220 (1981).CrossRefGoogle Scholar
  46. 46.
    Ancellet, G., Papayannis, A., Pelon, J., Megie, G.: DIAL Tropospheric Measurement Using a Nd:YAG Laser and the Raman Shifting Technique.J. Atmos. Ocean. Tech.6, 832–839 (1989).CrossRefGoogle Scholar
  47. 47.
    Stefanutti, L., Castagnoli, F., Del Guasta, M., Morandi, M., Sacco, V.M., Zuccagnoli, L., Godin, S., Megie, G., Porteneuve, J.: The Antarctic Ozone LIDAR System. Appl. Phys. B. 55, 3–12 (1992).Google Scholar
  48. 48.
    Sunesson, J.A., Apituley, A., Swart, D.P.J.: Differential Absorption Lidar System for Routine Monitoring of Tropospheric Ozone. Appl. Opt.33, 7045–7058 (1994).CrossRefGoogle Scholar
  49. 49.
    Fiorani, L., Calpini, B., Jaquet, L., Van Den Bergh, H., Durieux, E.: A Combined Determination of Wind Velocities and Ozone Concentrations for a First Measurement of Ozone Fluxes with a DIAL Instrument During the MEDCAPHOT-TRACE Campaign. Atmos. Environ, 32, 2151–2159 (1998).CrossRefGoogle Scholar
  50. 50.
    Zanzottera, E.: Differential Absorption Lidar Techniques in the Determination of Trace Pollutants and Physical Parameters of the Atmosphere. Crit. Rev. Anal. Chem. 21, 279–319 (1990).CrossRefGoogle Scholar
  51. 51.
    Killinger D.K., Menyuk, N.: Remote Probing of the Atmosphere Using a CO2 Dial System. IEEE J. Quant. Electron. 17, (1981).Google Scholar
  52. 52.
    Menyuk, N., Killinger, D.K., DeFeo, W.E.: Laser Remote Sensing of Hydrazine, MMH, and UDMH Using a Differential-Absorption CO2 Lidar. Appl. Opt. 21, 2275–2286 (1982).CrossRefGoogle Scholar
  53. 53.
    Amediek, A., Fix, A., Wirth, M., Ehret, G.: Development of an OPO System at 1.57 μm for Integrated Path DIAL Measurement of Atmospheric Carbon Dioxide. Appl. Phys. B. 92, 295–302 (2008).Google Scholar
  54. 54.
    Kempfer, U., Carnuth, W., Lotz, R., Trickl, T.: A Wide-Range Ultraviolet Lidar System for Tropospheric Ozone Measurements: Development and Application. Rev. Sci. Instrum. 65, 3145–3164 (1994).CrossRefGoogle Scholar
  55. 55.
    Reichardt, J., Wandinger, U., Serwazi, M., Weitkamp, C.: Combined Raman Lidar for Aerosol, Ozone, and Moisture Measurements. Opt. Eng. 35, 1457–1465 (1996).CrossRefGoogle Scholar
  56. 56.
    Moore, D.S., Scharff, R.J.: Portable Raman Explosives Detection. Anal. Bioanal. Chem. 393, 1571–1578 (2009).CrossRefGoogle Scholar
  57. 57.
    Wallin, S., Pettersson, A., Östmark, H., Hobro, A.: Laser-Based Standoff Detection of Explosives: a Critical Review. Anal. Bioanal. Chem. 395, 259–274 (2009).CrossRefGoogle Scholar
  58. 58.
    Deutsch, E. R., Kotidis, P., Zhu, N., Goyal, A. K., Ye, J., Mazurenko, A., ... Connors, R.: Active and Passive Infrared Spectroscopy for the Detection of Environmental Threats. SPIE. 91060A–91060A (2014).Google Scholar
  59. 59.
    Carlisle, C.B., Van Der Laan, J.E., Carr, L.W., Adam, P., Chiaroni, J.P.: CO2 Laser-Based Differential Absorption Lidar System for Range-Resolved and Long-Range Detection of Chemical Vapor Plumes. Appl. Opt. 34, 6187–6200 (1995).CrossRefGoogle Scholar
  60. 60.
    Carr, L.W., Fletcher, L., Crittenden, M., Carlisle, C.B., Gotoff, S.W., Reyes, F., D’Amico, F.M.: Frequency-Agile CO2 DIAL for Environmental Monitoring. SPIE. 282–294(1994).Google Scholar
  61. 61.
    Carr, L.W., Warren, R.E., Carlisle, C.B., Carlisle, S.A., Cooper, D.E., Fletcher, L., ... Reyes, F.: Multiple Volatile Organic Compound Vapor Chamber Testing with a Frequency-Agile CO2 DIAL System: Field-Test Results. P. Soc. Photo-Opt. Ins. 291–302 (1995).Google Scholar
  62. 62.
    Bellecci, C., Caputi G.E., De Donato F., Gaudio, P., Valentini M.: CO2 Dial for Monitoring Atmospheric Pollutants at University of Calabria. Il Nuovo Cimento C. 18, 463–472 (1995).CrossRefGoogle Scholar
  63. 63.
    Bellecci, C., Dalu, G.A., Aversa, P., Federico, S., Gaudio, P.: Evolution of Water Vapour Profile Sover Complex Terrain: Observation and Comparison with Model Simulation in the Valley of Cosenza. Proc. SPIE. 3865, 108–118 (1999).CrossRefGoogle Scholar
  64. 64.
    Bellecci, C., Gaudio, P., Gelfusa, M., Martellucci, S., Richetta, M., Ventura, P., Antonucci, A., Pasquino, F., Ricci, V., Sassolini, A.: Database for Chemical Weapons Detection: First Results. Proc. SPIE. 7116, (2008).Google Scholar
  65. 65.
    Gaudio, P., Malizia, A., Gelfusa, M., Martinelli, E., DiNatale, C., Poggi, L.A., Bellecci, C.: Mini-DIAL System Measurements Coupled with Multivariate Data Analysis to Identify TIC and TIM Simulants: Preliminary Absorption Data Base Analysis. J. Phys. Conf. 778, 012004 (2017).CrossRefGoogle Scholar
  66. 66.
    Frish, M.B., Wainner, R.T., Laderer, M.C., Green, B.D., Allen, M.G.: Standoff and Miniature Chemical Vapor Detectors Based on Tunable Diode Laser Absorption Spectroscopy. IEEE Sens. J. 10, 639–646 (2010).CrossRefGoogle Scholar
  67. 67.
    Gaudio, P., Malizia, A., Gelfusa, M., Murari, A., Parracino, S., Poggi, L.A., Lungaroni, M., Ciparisse, J.F., Di Giovanni, D., Cenciarelli, O., Carestia, M., Peluso, E., Gabbarini, V., Talebzadeh, S., Bellecci, C.: Lidar and Dial Application for Detection and Identification: A Proposal to Improve Safety and Security. J. Instrum. 12 (2017).Google Scholar
  68. 68.
    Xiang, C., Ma, X., Liang, A., Han, G., Gong, W., Yan, F.: Feasibility Study of Multi-Wave Length Differential Absorption LIDAR for CO2 Monitoring. Atmosphere, 7, 89 (2016).CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of Rome Tor VergataRomeItaly

Personalised recommendations