Skip to main content

Tolerance Pathways to Desiccation Stress in Seaweeds

  • Chapter
  • First Online:
Systems Biology of Marine Ecosystems

Abstract

Seaweeds are sessile organisms that inhabit coastal benthic systems and are key species for the equilibrium of marine communities. Rocky intertidal zone seaweeds are distributed in marked patterns determined by interactions between biotic and abiotic factors influenced by tide levels. It has been proposed that the distribution and abundance of organisms in the upper intertidal zones, with longer emersions, are mostly regulated by abiotic factors. Desiccation is a particularly noteworthy abiotic factor since, during low tide, algae of the upper intertidal zones can lose more than 90% of cellular water content, which can ultimately induce oxidative stress. Considering the necessary activation of several desiccation tolerance mechanisms, these algal species are ideal research models in ecophysiology. In fact, several studies using physiological, transcriptomic, and proteomic approaches have determined that desiccation tolerance mechanisms are expressed within a well-coordinated network that includes morphological and cell wall changes, photosynthetic activity diminishment, increased expression of desiccation-associated proteins, hormone accumulation, ROS scavenging by antioxidant enzymes and compounds, and osmolyte and protein synthesis. These mechanisms explain the permanence of tolerant algae species in the upper intertidal zone in comparison with lower intertidal species. Therefore, this chapter focuses on identifying tolerant algal species, and explaining the mechanisms underlying the high capacity of these species to cope with desiccation-induced oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe S, Kurashima A, Yokohama Y, Tanaka K (2001) The cellular ability of desiccation tolerance in Japanese intertidal seaweeds. Bot Mar 44(4):125–131

    Google Scholar 

  • Alpert P (2005) The limits and frontiers of desiccation-tolerant life. Integr Comp Biol 45:685–695

    Article  PubMed  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol 50:601–639

    Article  CAS  Google Scholar 

  • Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321

    Article  CAS  PubMed  Google Scholar 

  • Baniwal SK, Bharti K, Chan KY et al (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471–487

    Article  CAS  PubMed  Google Scholar 

  • Bewley JD (1979) Physiological aspects of desiccation tolerance. Annu Rev Plant Physiol 30:195–238

    Article  CAS  Google Scholar 

  • Bhat VB, Madyastha KM (2001) Scavenging of peroxynitrite by phycocyanin and phycocyanobilin from Spirulina platensis: protection against oxidative damage to DNA. Biochem Biophys Res Commun 285:262–266

    Article  CAS  PubMed  Google Scholar 

  • Billard E, Serrão E, Pearson G, Destombe CH, Valero M (2010) Fucus vesiculosus and spiralis species complex: a nested model of local adaptation at the shore level. Mar Ecol Prog Ser 405:163–174

    Article  Google Scholar 

  • Bird CE, Franklin EC, Smith CM, Toonen RJ (2013) Between tide and wave marks: a unifying model of physical zonation on littoral shores. PeerJ 1:e154. doi:10.7717/peerj.154

    Article  PubMed  PubMed Central  Google Scholar 

  • Blomstedt CK, Gianello RD, Hamill JD, Neale AD, Gaff DF (1998) Drought-stimulated genes correlated with desiccation tolerance of the resurrection grass Sporobolus stapfianus. Plant Growth Regul 24:153–161

    Article  CAS  Google Scholar 

  • Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH (2011) Porphyra: a marine crop shaped by stress. Trends Plant Sci 16:29–37

    Article  CAS  PubMed  Google Scholar 

  • Brodie J, Bartsch I, Neefus C, Orfanidis S, Bray T, Mathieson AC (2007) New insights into the cryptic diversity of the North Atlantic-Mediterranean Porphyra leucosticta complex: P. olivii sp. nov. and P. rosengurttii (Bangiales, Rhodophyta). Eur J Phycol 42:3–28

    Article  CAS  Google Scholar 

  • Broom JE, Nelson WA, Farr TJ, Jones WA, Aguilar-Rosas R, Aguilar-Rosas LE (2002) A reassessment of the taxonomic status of Porphyra suborbiculata, Porphyra carolinensis and Porphyra lilliputiana (Bangiales, Rhodophyta) based on molecular and morphological data. Eur J Phycol 37:227–235

    Article  Google Scholar 

  • Broom JE, Nelson WA, Yarish C, Phillips LE, Clayton MN (2010) A molecular survey of the summer Porphyra (Bangiales, Rhodophyta) flora of the Falkland Islands using rbcL, and nSSU sequence data. Aust Syst Bot 23:27–37

    Article  Google Scholar 

  • Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26:386–404

    Article  Google Scholar 

  • Burritt DJ, Larkindale J, Hurd CL (2002) Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation. Planta 215:829–838

    Article  CAS  PubMed  Google Scholar 

  • Cano-Europa E, Ortiz-Butrón R, Gallardo-Casas CA, Blas-Valdivia V, Pineda-Reynoso M, Olvera-Ramírez R, Franco-Colin M (2010) Phycobiliproteins from Pseudanabaena tenuis rich in c-phycoerythrin protect against HgCl2-caused oxidative stress and cellular damage in the kidney. J Appl Phycol 22:495–501

    Article  CAS  Google Scholar 

  • Chapman ARO (1990) Competitive interactions between Fucus spiralis L and Fucus vesiculosus L (Fucales, Phaeophyta). Hydrobiologia 204:205–209

    Article  Google Scholar 

  • Chapman ARO (1995) Functional ecology of fucoid algae: twenty-three years of progress. Phycologia 34:1–32

    Article  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Connell JH (1961) Effects of competition, predation by Thais lapillus, and other factors on natural populations of the barnacle Balanus balanoides. Ecol Monogr 31:61–104

    Article  Google Scholar 

  • Connell JH (1972) Community interactions on marine rocky intertidal shores. Annu Rev Ecol Syst 3:169–192

    Article  Google Scholar 

  • Contreras L, Moenne A, Correa JA (2005) Antioxidant responses in Scytosiphon lomentaria (Phaeophyceae) inhabiting copper-enriched coastal environments. J Phycol 41:1184–1195

    Article  CAS  Google Scholar 

  • Contreras L, Medina MH, Andrade S, Oppliger V, Correa JA (2007) Effects of copper on early developmental stages of Lessonia nigrescens Bory (Phaeophyceae). Environ Pollut 145:75–83

    Article  CAS  PubMed  Google Scholar 

  • Contreras L, Mella D, Moenne A, Correa JA (2009) Differential responses to copper-induced oxidative stress in the marine macroalgae Lessonia nigrescens and Scytosiphon lomentaria (Phaeophyceae). Aquat Toxicol 94:94–102

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Porcia L, Thomas D, Flores V, Correa JA (2011) Tolerance to oxidative stress induced by desiccation in Porphyra columbina (Bangiales, Rhodophyta). J Exp Bot 62:1815–1829

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Porcia L, Callejas S, Thomas D, Sordet C, Pohnert G, Contreras A, Lafuente A, Flores-Molina MR, Correa JA (2012) Seaweeds early development: detrimental effects of desiccation and attenuation by algal extracts. Planta 235:337–348

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Porcia L, López-Cristoffanini C, Lovazzano C, Flores-Molina MR, Thomas D, Núñez A, Fierro C, Guajardo E, Correa JA, Kube M, Reinhardt R (2013) Differential gene expression in Pyropia columbina (Bangiales, Rhodophyta) under natural hydration and desiccation conditions. Lat Am J Aquat Res 41:933–958

    Article  Google Scholar 

  • Cruz de Carvalho R, Bernardes Da Silva A, Soares R, Almeida AM, Coelho AV, Marques da Silva J, Branquinho C (2014) Differential proteomics of dehydration and rehydration in bryophytes: evidence towards a common desiccation tolerance mechanism. Plant Cell Environ 37:1499–1515

    Article  CAS  PubMed  Google Scholar 

  • Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–211

    Article  Google Scholar 

  • Dietz KJ (2011) Peroxiredoxins in plants and cyanobacteria. Antioxid Redox Signal 15:1129–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinakar C, Djilianov D, Bartels D (2011) Photosynthesis in desiccation tolerant plants: energy metabolism and antioxidative stress defense. Plant Sci 182:29–41

    Article  PubMed  CAS  Google Scholar 

  • Dring MJ, Brown FA (1982) Photosynthesis of intertidal brown algae during and after periods of emersion: a renewed search for physiological causes of zonation. Mar Ecol Prog Ser 8:301–308

    Article  Google Scholar 

  • Fierro C, López-Cristoffanini C, Latorre N, Rivas J, Contreras-Porcia L (2016) Methylglyoxal metabolism in seaweeds during desiccation. Rev Biol Mar Oceanogr 51:187–191

    Article  Google Scholar 

  • Fierro C, López-Cristoffanini C, Meynard A, Lovazzano C, Castañeda F, Guajardo E, Contreras-Porcia L (2017) Expression profile of desiccation tolerance factors in intertidal seaweed species during the natural tidal cycle. Planta 245(6):1149–1164

    Article  CAS  PubMed  Google Scholar 

  • Flores-Molina MR, Thomas D, Lovazzano C, Núñez A, Zapata J, Kumar M, Correa JA, Contreras-Porcia L (2014) Desiccation stress in intertidal seaweeds: effects on morphology, photosynthetic performance and antioxidant responses. Aquat Bot 113:90–99

    Article  CAS  Google Scholar 

  • Flores-Molina MR, Rautenberger R, Muñoz P, Huovinen P, Gomez I (2016) Stress tolerance of the endemic antarctic brown alga Desmarestia anceps to UV radiation and temperature is mediated by high concentrations of phlorotannins. Photochem Photobiol 92:455–466

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antiox Redox Signal 11:861–905

    Article  CAS  Google Scholar 

  • Gasulla F, Jain R, Barreno E, Guéra A, Balbuena TS, Thelen JJ, Oliver MJ (2013) The response of Asterochloris erici (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach. Plant Cell Environ 36:1363–1378

    Article  CAS  PubMed  Google Scholar 

  • Gómez I, López-Figueroa F, Ulloa N, Morales V, Lovengreen C, Huovinen P, Hess S (2004) Patterns of photosynthesis in 18 species of intertidal macroalgae from southern Chile. Mar Ecol Prog Ser 270:103–116

    Article  Google Scholar 

  • Gómez I, Huovinen P (2015) Lack of physiological depth patterns in conspecifics of endemic Antarctic brown algae: a trade-off between UV stress tolerance and shade adaption? PLoS One 10(8):e0134440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guajardo E, Correa JA, Contreras-Porcia L (2016) Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species. Planta 243:1–15

    Article  CAS  Google Scholar 

  • Guillemin ML, Contreras-Porcia L, Ramírez ME, Macaya EC, Bulboa Contador C, Woods H, Wyatt C, Brodie J (2016) The bladed Bangiales (Rhodophyta) of the South Eastern Pacific: molecular species delimitation reveals extensive diversity. Mol Phylogenet Evol 94:814–826

    Article  PubMed  Google Scholar 

  • Hay ME (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annu Rev Mar Sci 1:193–212

    Article  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  CAS  PubMed  Google Scholar 

  • Hohmann S (2004) Plant responses to abiotic stress, 1st edn. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Holzinger A, Lütz C, Karsten U (2011) Desiccation stress causes structural and ultrastructural alterations in the aeroterrestrial green alga Klebsormidium crenulatum (Klebsormidiophyceae, Streptophyta) isolated from an alpine soil crust. J Phycol 47:591–602

    Article  PubMed  Google Scholar 

  • Holzinger A, Karsten U (2013) Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Front Plant Sci 4:327

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Hossain MZ, Fujita M (2009) Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aust J Crop Sci 3:53–64

    CAS  Google Scholar 

  • Huey RB, Carlson M, Crozier L, Frazier M, Hamilton H, Harley C, Hoang A, Kingsolver JG (2002) Plants versus animals: do they deal with stress in different ways? Integr Comp Biol 42:415–423

    Article  PubMed  Google Scholar 

  • Hurd CL, Harrison PJ, Bischof K, Lobban SC (eds) (2014) Seaweed ecology and physiology, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  PubMed  Google Scholar 

  • Kim KY, Garbary DJ (2007) Photosynthesis in Codium fragile (Chlorophyta) from a Nova Scotia estuary: responses to desiccation and hyposalinity. Mar Biol 151:99–107

    Article  Google Scholar 

  • Kopriva S, Koprivova A (2004) Plant adenosine 5′–phosphosulphate reductase: the past, the present, and the future. J Exp Bot 55:1775–1183

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Kumari P, Gupta V, Reddy CRK, Jha B (2010) Biochemical responses of red alga Gracilaria corticata (Gracilariales, Rhodophyta) to salinity induced oxidative stress. J Exp Mar Biol Ecol 391:27–34

    Article  CAS  Google Scholar 

  • Kumar M, Gupta V, Trivedi N, Kumari P, Bijo AJ, Reddy CRK, Jha B (2011) Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Environ Exp Bot 72:194–201

    Article  CAS  Google Scholar 

  • Lee MY, Shin HW (2003) Cadmium-induced changes in antioxidant enzymes from the marine alga Nannochloropsis oculata. J Appl Phycol 15:13–19

    Article  CAS  Google Scholar 

  • Leprince O, Buitink J (2010) Desiccation tolerance: from genomics to the field. Plant Sci 179:554–564

    Article  CAS  Google Scholar 

  • Leuschner C, Landwehr S, Mehlig U (1998) Limitation of carbon assimilation of intertidal Zostera noltii and Z. marina by desiccation at low tide. Aquat Bot 62:171–176

    Article  CAS  Google Scholar 

  • Lipkin Y, Beer S, Eshel A (1993) The ability of Porphyra linearis (Rhodophyta) to tolerate prolonged periods of desiccation. Bot Mar 36(6):517–524

    Article  Google Scholar 

  • Liu W, Au DWT, Anderson DM, Lam PKS, Wu RSS (2007) Effects of nutrients, salinity, pH and light: dark cycle on the production of reactive oxygen species in the alga Chattonella marina. J Exp Mar Biol Ecol 346:76–86

    Article  CAS  Google Scholar 

  • López-Cristoffanini C, Tellier F, Otaíza R, Correa JA, Contreras-Porcia L (2013) Tolerance to air exposure: a feature driving the latitudinal distribution of two sibling kelp species. Bot Mar 56:431–440

    Article  CAS  Google Scholar 

  • López-Cristoffanini C, Zapata J, Gaillard F, Potin P, Correa JA, Contreras-Porcia L (2015) Identification of proteins involved in the tolerance responses to desiccation stress in the red seaweed Pyropia orbicularis (Rhodophyta. Bangiales). Proteomics 15:3954–3968

    Article  PubMed  CAS  Google Scholar 

  • Maciver SK, Hussey PJ (2002) The ADF/cofilin family: actin-remodeling proteins. Genome Biol 3:1–12

    Article  Google Scholar 

  • McCandless EL, Craigie JS (1979) Sulfated polysaccharides in red and brown algae. Annu Rev Plant Physiol 30:41–53

    Article  CAS  Google Scholar 

  • Mislan KAS, Wethey DS, Helmuth B (2009) When to worry about the weather: role of tidal cycle in determining patterns of risk in intertidal ecosystems. Glob Change Biol 15:3056–3065

    Article  Google Scholar 

  • Mittenhuber G (2001) Phylogenetic analyses and comparative genomics of vitamin B6 (pyridoxine) and pyridoxal phosphate biosynthesis pathways. J Mol Microbiol Biotechnol 3:1–20

    CAS  PubMed  Google Scholar 

  • Moore JP, Farrant JM (2015) Editorial: current advances and challenges in understanding plant desiccation tolerance. Front Plant Sci 6:1–3

    Article  Google Scholar 

  • Niwa K, Iida S, Kato A, Kawai H, Kikuchi N, Kobiyama A, Aruga Y (2009) Genetic diversity and introgression in two cultivated species (Porphyra yezoensis and Porphyra tenera) and closely related wild species of Porphyra (Bangiales, Rhodophyta). J Phycol 45(2):493–502

    Article  CAS  PubMed  Google Scholar 

  • Neefus CD, Mathieson AC, Bray TL (2008) The distribution, morphology, and ecology of three introduced Asiatic species of Porphyra (Bangiales, Rhodophyta) in the Northwestern Atlantic. J Phycol 44:1399–1414

    Article  PubMed  Google Scholar 

  • Nelson WA (2013) Pyropia plicata sp. nov. (Bangiales, Rhodophyta): naming a common intertidal alga from New Zealand. PhytoKeys 21:17–28

    Article  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol 49:249–279

    Article  CAS  Google Scholar 

  • Oesterhelt C, Schnarrenberger C, Gross W (1996) Phosphomannomutase and phosphoglucomutase in the red alga Galdieria sulphuraria. Plant Sci 121:19–27

    Article  CAS  Google Scholar 

  • Oliver MJ, Bewley JD (1997) Desiccation tolerance of plant tissues: a mechanistic overview. In: Janick J (ed) Horticultural reviews, vol 18, 1st edn. Wiley, New York, pp 171–213

    Google Scholar 

  • Oliver MJ, Wood AJ, Mahony PO (1998) “To dryness and beyond ”—preparation for the dried state and rehydration in vegetative desiccation-tolerant plants. Plant Growth Regul 24(3):193–201

    Article  CAS  Google Scholar 

  • Oliver MJ, Jain R, Balbuena TS, Agrawal G, Gasulla F, Thelen JJ (2011) Proteome analysis of leaves of the desiccation-tolerant grass, Sporobolus stapfianus, in response to dehydration. Phytochemistry 72:1273–1284

    Article  CAS  PubMed  Google Scholar 

  • Paine RT (1974) Intertidal community structure. Experimental studies in the relation between a dominant competitor and its principle predator. Oecologia 15:93–120

    Article  CAS  PubMed  Google Scholar 

  • Pearson GA, Kautsky L, Serrao E (2000) Recent evolution in Baltic Fucus vesiculosus: reduced tolerance to emersion stresses compared to intertidal (North Sea) populations. Mar Ecol Prog Ser 202:67–79

    Article  Google Scholar 

  • Pressel S, Ligrone R, Duckett JG (2006) Effects of de- and rehydration on food-conducting cells in the moss Polytrichum formosum: a cytological study. Ann Bot 98:67–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene. Plant Cell Environ 25:141–151

    Article  CAS  PubMed  Google Scholar 

  • Ramírez ME, Contreras-Porcia L, Guillemin ML, Brodie J, Valdivia C, Flores-Molina MR, Nuñez A, Bulboa Contador C, Lovazzano C (2014) Pyropia orbicularis sp. nov. (Rhodophyta, Bangiaceae) based on a population previously known as Porphyra columbina from the central coast of Chile. Phytotaxa 158(2):133–153

    Article  Google Scholar 

  • Raschke M, Boycheva S, Crèvecoeur M, Nunes-Nesi A, Witt S, Fernie AR, Amrhein N, Fitzpatrick TB (2011) Enhanced levels of vitamin B (6) increase aerial organ size and positively affect stress tolerance in Arabidopsis. Plant J 66:414–432

    Article  CAS  PubMed  Google Scholar 

  • Rijstenbil JW (2001) Effects of periodic, low UVA radiation on cell characteristics and oxidative stress in the marine planktonic diatom Ditylum brightwellii. Eur J Phycol 36:1–8

    Article  Google Scholar 

  • Rocha de Souza MC, Marques CT, Guerra Dore CM, Ferreira da Silva FR, Oliveira Rocha HA, Leite EL (2007) Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol 19:153–160

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N, Jacquot JP (2002) Plant peroxiredoxins: alternative hydroperoxide scavenging enzymes. Photosynth Res 74:259–268

    Article  CAS  PubMed  Google Scholar 

  • Romay C, González R, Ledón N, Remirez D, Rimbau V (2003) C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci 4:207–216

    Article  CAS  PubMed  Google Scholar 

  • Rugg DA, Norton TA (1987) Pelvetia canaliculata, a seaweed that shuns the sea. In: Crawford RMM (ed) Plant life in aquatic and amphibious environments. Blackwells, Oxford, pp 347–358

    Google Scholar 

  • Scott P (2000) Resurrection plants and the secrets of eternal leaf. Ann Bot 85:159–166

    Article  CAS  Google Scholar 

  • Shelford VE (1914) A comparison of the responses of sessile and motile plants and animals. Am Soc Nat 48:641–674

    Article  Google Scholar 

  • Schonbeck M, Norton TA (1978) Factors controlling the upper limits of fucoid algae on the shore. J Exp Mar Biol Ecol 31:303–313

    Article  Google Scholar 

  • Schonbeck MW, Norton TA (1980) The effects on intertidal fucoid algae of exposure to air under various conditions. Bot Mar 23(3):141–148

    Article  Google Scholar 

  • Smith CM, Satoh K, Fork DC (1986) The effects of osmotic tissue dehydration and air drying on morphology and energy transfer in two species of Porphyra. Plant Physiol 80:843–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson TA, Stephenson A (1949) The universal features of zonation between tide-marks on rocky coasts. J Ecol 2:289–305

    Article  Google Scholar 

  • Sutherland JE, Lindstrom S, Nelson W, Brodie J, Lynch M, Hwang MS, Choi HG, Miyata M, Kikuchi N, Oliveira M, Farr T, Neefus C, Mortensen A, Milstein D, Müller K (2011) A new look at an ancient order: generic revision of the Bangiales. J Phycol 47:1131–1151

    Article  PubMed  Google Scholar 

  • Swanson AK, Druehl LD (2002) Induction, exudation and the UV protective role of kelp phlorotannins. Aquat Bot 73:241–253

    Article  CAS  Google Scholar 

  • Tannin-Spitz T, Bergman M, van-Moppes D, Grossman S, Arad S (Malis) (2005) Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp. J Appl Phycol 17:215–222

    Google Scholar 

  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteome 71:391–411

    Article  CAS  Google Scholar 

  • Toldi O, Tuba Z, Scott P (2009) Vegetative desiccation tolerance: is it a goldmine for bioengineering crops? Plant Sci 176:187–199

    Article  CAS  Google Scholar 

  • Tripathi BN, Bhatt I, Dietz KJ (2009) Peroxiredoxins: a less studied component of hydrogen peroxide detoxification in photosynthetic organisms. Protoplasma 235:3–15

    Article  CAS  PubMed  Google Scholar 

  • Valpuesta V, Botella MA (2004) Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci 9:573–577

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Jónsdóttir R, Ólafsdóttir G (2009) Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem 116:240–248

    Article  CAS  Google Scholar 

  • Wang L, Mao Y, Kong F, Li G, Ma F, Zhang B, Sun P, Bi G, Zhang F, Xue H, Cao M (2013) Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis. PLoS One 8(5):e65902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watt CA, Scrosati RA (2013) Bioengineer effects on understory species richness, diversity, and composition change along an environmental stress gradient: experimental and mensurative evidence. Estuar Coast Shelf Sci 123:10–18

    Article  Google Scholar 

  • West AL, Mathieson AC, Klein AS, Neefus CD, Bray TL (2005) Molecular ecological studies of New England species of Porphyra (Rhodophyta, Bangiales). Nova Hedwigia 80:1–24

    Article  Google Scholar 

  • Wiltens J, Schreiber U, Vidaver W (1978) Chlorophyll fluorescence induction: an indicator of photosynthetic activity in marine algae undergoing desiccation. Can J Bot 56:2787–2794

    Article  CAS  Google Scholar 

  • Wright JP, Jones CG, Boeken B, Shachak M (2006) Predictability of ecosystem engineering effects on species richness across environmental variability and spatial scales. J Ecol 94:815–824

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by FONDECYT 1120117 and DI-501-14/R (Universidad Andrés Bello, Proyectos Regulares Internos) to LC-P. We acknowledge the language support provided by Ashley VanCott, BioPub Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loretto Contreras-Porcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Contreras-Porcia, L., López-Cristoffanini, C., Meynard, A., Kumar, M. (2017). Tolerance Pathways to Desiccation Stress in Seaweeds. In: Kumar, M., Ralph, P. (eds) Systems Biology of Marine Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-62094-7_2

Download citation

Publish with us

Policies and ethics