Formalization of Transform Methods Using HOL Light

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10383)


Transform methods, like Laplace and Fourier, are frequently used for analyzing the dynamical behaviour of engineering and physical systems, based on their transfer function, and frequency response or the solutions of their corresponding differential equations. In this paper, we present an ongoing project, which focuses on the higher-order logic formalization of transform methods using HOL Light theorem prover. In particular, we present the motivation of the formalization, which is followed by the related work. Next, we present the task completed so far while highlighting some of the challenges faced during the formalization. Finally, we present a roadmap to achieve our objectives, the current status and the future goals for this project.


Laplace transform Fourier transform Interactive theorem proving HOL Light 



This work was supported by the National Research Program for Universities grant (number 1543) of Higher Education Commission (HEC), Pakistan.


  1. 1.
    Abad, G.: Power Electronics and Electric Drives for Traction Applications. Wiley, Hoboken (2016)CrossRefGoogle Scholar
  2. 2.
    Akbarpour, B., Tahar, S.: A methodology for the formal verification of FFT algorithms in HOL. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 37–51. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30494-4_4 CrossRefGoogle Scholar
  3. 3.
    Beerends, R.J., Morsche, H.G., Van den Berg, J.C., Van de Vrie, E.M.: Fourier and Laplace Transforms. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bogart, T.F.: Laplace Transforms and Control Systems Theory for Technology: Including Microprocessor-Based Control Systems. Wiley, New York (1982)Google Scholar
  5. 5.
    Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Elsevier, Amsterdam (1980)zbMATHGoogle Scholar
  6. 6.
    Boyce, W.E., DiPrima, R.C., Haines, C.W.: Elementary Differential Equations and Boundary Value Problems, vol. 9. Wiley, New York (1969)zbMATHGoogle Scholar
  7. 7.
    Bracewell, R.N.: The Fourier Transform and its Applications. McGraw-Hill, New York (1978)zbMATHGoogle Scholar
  8. 8.
    Capretta, V.: Certifying the fast fourier transform with Coq. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 154–168. Springer, Heidelberg (2001). doi: 10.1007/3-540-44755-5_12 CrossRefGoogle Scholar
  9. 9.
    Chapin, L.: Communication Systems (1978)Google Scholar
  10. 10.
    Chau, C.K., Kaufmann, M., Hunt Jr., W.A.: Fourier Series Formalization in ACL2 (r). arXiv preprint arXiv:1509.06087 (2015)
  11. 11.
    Chu, E.: Discrete and Continuous Fourier Transforms: Analysis, Applications and Fast Algorithms. CRC Press, Boca Raton (2008)zbMATHGoogle Scholar
  12. 12.
    Davidson, D.B.: Computational Electromagnetics for RF and Microwave Engineering. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  13. 13.
    Devasahayam, S.R.: Signals and Systems in Biomedical Engineering: Signal Processing and Physiological Systems Modeling. Springer Science & Business Media, New York (2012)Google Scholar
  14. 14.
    Dorf, R.C., Bishop, R.H.: Modern Control Systems. Prentice Hall, Eindhoven (1998)zbMATHGoogle Scholar
  15. 15.
    Dougherty, G.: Digital Image Processing for Medical Applications. Cambridge University Press, Cambridge (2009)Google Scholar
  16. 16.
    Du, K.L., Swamy, M.N.S.: Wireless Communication Systems: From RF Subsystems to 4G Enabling Technologies. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  17. 17.
    Fortmann, T.E., Hitz, K.L.: An introduction to linear control systems. CRC Press, Boca Raton (1977)zbMATHGoogle Scholar
  18. 18.
    Gamboa, R.A.: Mechanically verifying the correctness of the fast fourier transform in ACL2. In: Rolim, J. (ed.) IPPS 1998. LNCS, vol. 1388, pp. 796–806. Springer, Heidelberg (1998). doi: 10.1007/3-540-64359-1_743 CrossRefGoogle Scholar
  19. 19.
    Gamboa, R.A.: The correctness of the fast fourier transform: a structured proof in ACL2. Formal Methods Syst. Des. 20(1), 91–106 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    Gaskill, J.D.: Linear Systems, Fourier Transforms, and Optics, 1st edn. Wiley, New York (1978)Google Scholar
  21. 21.
    Gaydecki, P.: Foundations of Digital Signal Processing: Theory, Algorithms and Hardware Design. Institution of Engineering and Technology, Stevenage (2004)CrossRefzbMATHGoogle Scholar
  22. 22.
    Gorini, V., Frigerio, A.: Fundamental Aspects of Quantum Theory, vol. 144. Springer Science & Business Media, USA (2012)zbMATHGoogle Scholar
  23. 23.
  24. 24.
    Harrison, J.: HOL Light Multivariate Calculus (2017).
  25. 25.
    Harrison, J.: Integration Theory in HOL Light (2017).
  26. 26.
    Harrison, J.: Real Vectors in Euclidean Space (2017).
  27. 27.
    Hasan, O., Tahar, S.: Formal Verification Methods. Encyclopedia of Information Science and Technology, pp. 7162–7170. IGI Global Pub., Hershey (2015)Google Scholar
  28. 28.
    Hilbe, J.M.: Astrostatistical Challenges for the New Astronomy, vol. 1. Springer Science & Business Media, New York (2012)Google Scholar
  29. 29.
    Jancewicz, B.: Trivector fourier transformation and electromagnetic field. J. Math. Phys. 31(8), 1847–1852 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Jin, J.M.: Theory and Computation of Electromagnetic Fields. Wiley, Hoboken (2011)Google Scholar
  31. 31.
    Kriezis, E.E., Chrissoulidis, D., Papagiannakis, A.: Electromagnetics and Optics. World Scientific, Singapore (1992)CrossRefGoogle Scholar
  32. 32.
    Madhow, U.: Introduction to Communication Systems. Cambridge University Press, Cambridge (2014)zbMATHGoogle Scholar
  33. 33.
    McLachlan, N.W.: Laplace Transforms and their Applications to Differential Equations. Courier Corporation, Cedar City (2014)Google Scholar
  34. 34.
    Nise, N.S.: Control Systems Engineering. Wiley, New York (2007)zbMATHGoogle Scholar
  35. 35.
    Ogata, K., Yang, Y.: Modern Control Engineering. Prentice-Hall, Englewood Cliffs (1970)Google Scholar
  36. 36.
    Oppenheim, A.V., Willsky, A.S., Hamid Nawab, S.: Signals and Systems. Prentice Hall Processing Series, 2nd edn. Prentice Hall Inc., Upper Saddle River (1996)Google Scholar
  37. 37.
    Papoulis, A.: Signal Analysis, vol. 2. McGraw-Hill, New York (1977)zbMATHGoogle Scholar
  38. 38.
    Pytel, A., Kiusalaas, J.: Engineering Mechanics: Dynamics. Nelson Education, Scarborough (2016)Google Scholar
  39. 39.
    Rashid, A., Hasan, O.: On the formalization of fourier transform in higher-order logic. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 483–490. Springer, Cham (2016). doi: 10.1007/978-3-319-43144-4_31 CrossRefGoogle Scholar
  40. 40.
    Rashid, M.H.: Power Electronics: Circuits, Devices, and Applications. Pearson Education India, Delhi (2009)Google Scholar
  41. 41.
    Siddique, U., Mahmoud, M.Y., Tahar, S.: On the formalization of Z-transform in HOL. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 483–498. Springer, Cham (2014). doi: 10.1007/978-3-319-08970-6_31 Google Scholar
  42. 42.
    Siebert, W.M.: Circuits, Signals, and Systems, vol. 2. MIT press, Cambridge (1986)Google Scholar
  43. 43.
    Stacey, W.M.: Nuclear Reactor Physics. Wiley, New York (2007)CrossRefGoogle Scholar
  44. 44.
    Stark, H.: Application of Optical Fourier Transforms. Elsevier, Burlington (2012)Google Scholar
  45. 45.
    Taqdees, S.H., Hasan, O.: Formalization of laplace transform using the multivariable calculus theory of HOL-light. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 744–758. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45221-5_50 CrossRefGoogle Scholar
  46. 46.
    Taqdees, S.H., Hasan, O.: Formally verifying transfer functions of linear analog circuits. IEEE Des. Test (2017).
  47. 47.
    Thomas, R.E., Rosa, A.J., Toussaint, G.J.: The Analysis and Design of Linear Circuits, Binder Ready Version. Wiley, New York (2016)Google Scholar
  48. 48.
    Ziemer, R., Tranter, W.H.: Principles of Communications: System Modulation and Noise. Wiley, Chichester (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer Science (SEECS) National University of Sciences and Technology (NUST)IslamabadPakistan

Personalised recommendations