Skip to main content

Pharmacology of Opioids

  • Chapter
  • First Online:
Basic Sciences in Anesthesia

Abstract

Opioids are the most prevalently used analgesic perioperatively and in patients with chronic pain syndromes.. The analgesic effects of opioids are influenced by their route of administration, pharmacokinetics/pharmacodynamics, receptor downstream signaling, and non-opioid signal modifying mechanisms. Although opioids are effective analgesic drugs, their use is also associated with adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ananthan S. Opioid ligands with mixed mu/delta opioid receptor interactions: an emerging approach to novel analgesics. AAPS J [Research Support, NIH, ExtramuralReview]. 2006;8(1):E118–25.

    CAS  Google Scholar 

  2. Cahill CMTA, Cook C, Ong E, Morón JA, Evans CJ. Does the kappa opioid receptor system contribute to pain aversion? Front Pharmacol. 2014;6:253.

    Google Scholar 

  3. Thompson GL, Canals M, Poole DP. Biological redundancy of endogenous gpcr ligands in the gut and the potential for endogenous functional selectivity. Front Pharmacol. 2014;5:262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Xu J, Xu M, Hurd YL, Pasternak GW, Pan YX. Isolation and characterization of new exon 11-associated n-terminal splice variants of the human mu opioid receptor gene. J Neurochem. 2009;108(4):962–72.

    Article  CAS  PubMed  Google Scholar 

  5. Kasai S, Ikeda K. Pharmacogenomics of the human micro-opioid receptor. Pharmacogenomics. 2011;12(9):1305–20.

    Article  CAS  PubMed  Google Scholar 

  6. Fukuda K, Hayashida M, Ide S, Saita N, Kokita Y, Kasai S, et al. Association between oprm1 gene polymorphisms and fentanyl sensitivity in patients undergoing painful cosmetic surgery. Pain. 2009;147(1–3):194–201.

    Article  CAS  PubMed  Google Scholar 

  7. Rakvag TT, Klepstad P, Baar C, Kvam TM, Dale O, Kaasa S, et al. The val158met polymorphism of the human catechol-o-methyltransferase (comt) gene may influence morphine requirements in cancer pain patients. Pain. 2005;116(1–2):73–8.

    Article  CAS  PubMed  Google Scholar 

  8. Reyes-Gibby CC, Shete S, Rakvag T, Bhat SV, Skorpen F, Bruera E, et al. Exploring joint effects of genes and the clinical efficacy of morphine for cancer pain: Oprm1 and comt gene. Pain. 2007;130(1–2):25–30.

    Article  CAS  PubMed  Google Scholar 

  9. Campa D, Gioia A, Tomei A, Poli P, Barale R. Association of abcb1/mdr1 and oprm1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther. 2008;83(4):559–66.

    Article  CAS  PubMed  Google Scholar 

  10. Labuz D, Mousa SA, Schafer M, Stein C, Machelska H. Relative contribution of peripheral versus central opioid receptors to antinociception. Brain Res. 2007;1160:30–8.

    Article  CAS  PubMed  Google Scholar 

  11. Yaksh TL, Rudy TA. Narcotic analgestics: Cns sites and mechanisms of action as revealed by intracerebral injection techniques. Pain. 1978;4(4):299–359.

    CAS  PubMed  Google Scholar 

  12. De Vadder F, Gautier-Stein A, Mithieux G. Satiety and the role of mu-opioid receptors in the portal vein. Curr Opin Pharmacol. 2013;13(6):959–63.

    Article  PubMed  CAS  Google Scholar 

  13. Minami M, Satoh M. Molecular biology of the opioid receptors: structures, functions and distributions. Neurosci Res. 1995;23(2):121–45.

    Article  CAS  PubMed  Google Scholar 

  14. Christie MJ. Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol. 2008;154(2):384–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Law PY, Reggio PH, Loh HH. Opioid receptors: toward separation of analgesic from undesirable effects. Trends Biochem Sci. 2013;38(6):275–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andoh T, Yageta Y, Konno M, Yamaguchi-Miyamoto T, Takahata H, Nojima H, et al. Evidence for separate involvement of different mu-opioid receptor subtypes in itch and analgesia induced by supraspinal action of opioids. J Pharmacol Sci. 2008;106(4):667–70.

    Article  CAS  PubMed  Google Scholar 

  17. Ling GS, Spiegel K, Lockhart SH, Pasternak GW. Separation of opioid analgesia from respiratory depression: evidence for different receptor mechanisms. J Pharmacol Exp Ther. 1985;232(1):149–55.

    CAS  PubMed  Google Scholar 

  18. Arends RH, Hayashi TG, Luger TJ, Shen DD. Cotreatment with racemic fenfluramine inhibits the development of tolerance to morphine analgesia in rats. J Pharmacol Exp Ther. 1998;286(2):585–92.

    CAS  PubMed  Google Scholar 

  19. Jolas T, Aghajanian GK. Opioids suppress spontaneous and nmda-induced inhibitory postsynaptic currents in the dorsal raphe nucleus of the rat in vitro. Brain Res. 1997;755(2):229–45.

    Article  CAS  PubMed  Google Scholar 

  20. Jolas T, Nestler EJ, Aghajanian GK. Chronic morphine increases gaba tone on serotonergic neurons of the dorsal raphe nucleus: association with an up-regulation of the cyclic amp pathway. Neuroscience. 2000;95(2):433–43.

    Article  CAS  PubMed  Google Scholar 

  21. Juhasz JR, Hasbi A, Rashid AJ, So CH, George SR, O’Dowd BF. Mu-opioid receptor heterooligomer formation with the dopamine d1 receptor as directly visualized in living cells. Eur J Pharmacol. 2008;581(3):235–43.

    Article  CAS  PubMed  Google Scholar 

  22. Lachowicz JE, Shen Y, Monsma FJ Jr, Sibley DR. Molecular cloning of a novel g protein-coupled receptor related to the opiate receptor family. J Neurochem. 1995;64(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  23. Fioravanti B, Vanderah TW. The orl-1 receptor system: are there opportunities for antagonists in pain therapy? Curr Top Med Chem. 2008;8(16):1442–51.

    Article  CAS  PubMed  Google Scholar 

  24. Hoskin PJ, Hanks GW. Opioid agonist-antagonist drugs in acute and chronic pain states. Drugs. 1991;41(3):326–44.

    Article  CAS  PubMed  Google Scholar 

  25. Bujedo BM. Current evidence for spinal opioid selection in postoperative pain. Korean J Pain. 2014;27(3):200–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mugabure BB. A clinical approach to neuraxial morphine for the treatment of postoperative pain. Pain Res Treat. 2012;2012:612145.

    Google Scholar 

  27. Hughes DA, Hill DA. Intrathecal alfentanil with and without bupivacaine for analgesia in labour. Anaesthesia. 2000;55(11):1116–21.

    Article  CAS  PubMed  Google Scholar 

  28. Coda BA, Brown MC, Risler L, Syrjala K, Shen DD. Equivalent analgesia and side effects during epidural and pharmacokinetically tailored intravenous infusion with matching plasma alfentanil concentration. Anesthesiology. 1999;90(1):98–108.

    Article  CAS  PubMed  Google Scholar 

  29. Mhyre JM, Hong RW, Greenfield ML, Pace NL, Polley LS. The median local analgesic dose of intrathecal bupivacaine with hydromorphone for labour: a double-blind randomized controlled trial. Can J Anaesth. 2013;60(11):1061–9.

    Article  PubMed  Google Scholar 

  30. Grider JS, Mullet TW, Saha SP, Harned ME, Sloan PA. A randomized, double-blind trial comparing continuous thoracic epidural bupivacaine with and without opioid in contrast to a continuous paravertebral infusion of bupivacaine for post-thoracotomy pain. J Cardiothorac Vasc Anesth. 2012;26(1):83–9.

    Article  CAS  PubMed  Google Scholar 

  31. Liu SS, Bieltz M, Wukovits B, John RS. Prospective survey of patient-controlled epidural analgesia with bupivacaine and hydromorphone in 3736 postoperative orthopedic patients. Reg Anesth Pain Med. 2010;35(4):351–4.

    Article  CAS  PubMed  Google Scholar 

  32. Beatty NC, Arendt KW, Niesen AD, Wittwer ED, Jacob AK. Analgesia after cesarean delivery: a retrospective comparison of intrathecal hydromorphone and morphine. J Clin Anesthe [Comparative Study]. 2013;25(5):379–83.

    Article  CAS  Google Scholar 

  33. Lee YS, Park YC, Kim JH, Kim WY, Yoon SZ, Moon MG, et al. Intrathecal hydromorphone added to hyperbaric bupivacaine for postoperative pain relief after knee arthroscopic surgery: a prospective, randomised, controlled trial. Eur J Anaesthesiol [Randomized Controlled TrialResearch Support, Non-US Gov’t]. 2012;29(1):17–21.

    CAS  Google Scholar 

  34. Perotti L, Cusato M, Ingelmo P, Niebel TL, Somaini M, Riva F, et al. A comparison of differences between the systemic pharmacokinetics of levobupivacaine and ropivacaine during continuous epidural infusion: a prospective, randomized, multicenter, double-blind controlled trial. Anesth Analg [Comparative Study Multicenter StudyRandomized Controlled Trial Research Support, Non-US Gov’t]. 2015;121(2):348–56.

    CAS  Google Scholar 

  35. Kampe S, Weinreich G, Darr C, Eicker K, Stamatis G, Hachenberg T. The impact of epidural analgesia compared to systemic opioid-based analgesia with regard to length of hospital stay and recovery of bowel function: retrospective evaluation of 1555 patients undergoing thoracotomy. J Cardiothorac Surg. 2014;9:175.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Matot I, Drenger B, Weissman C, Shauli A, Gozal Y. Epidural clonidine, bupivacaine and methadone as the sole analgesic agent after thoracotomy for lung resection. Anaesthesia [Clinical Trial Comparative Study Randomized Controlled Trial Research Support, Non-US Gov’t]. 2004;59(9):861–6.

    CAS  Google Scholar 

  37. Bujedo BM. Current evidence for spinal opioid selection in postoperative pain. Korean J Pain [Review]. 2014;27(3):200–9.

    Article  CAS  Google Scholar 

  38. Bujedo BM. A clinical approach to neuraxial morphine for the treatment of postoperative pain. Pain Res Treat. 2012;2012:612145.

    Google Scholar 

  39. Hughes DA HD. Intrathecal alfentanil with and without bupivacaine for analgesia in labour. Anaesthesia. 2000;55(11):1116–21.

    Article  PubMed  Google Scholar 

  40. Coda BABM, Risler L, Syrjala K, Shen DD. Equivalent analgesia and side effects during epidural and pharmacokinetically tailored intravenous infusion with matching plasma alfentanil concentration. Anaesthesia. 1999;90:98–108.

    Article  CAS  Google Scholar 

  41. Mhyre JM, Hong RW, Greenfield ML, Pace NL, Polley LS. The median local analgesic dose of intrathecal bupivacaine with hydromorphone for labour: a double-blind randomized controlled trial. Can J Anaesthesia Journal canadien d’anesthesie [Comparative Study Randomized Controlled Trial Research Support, Non-US Gov’t]. 2013;60(11):1061–9.

    Google Scholar 

  42. Grider JS, Mullet TW, Saha SP, Harned ME, Sloan PA. A randomized, double-blind trial comparing continuous thoracic epidural bupivacaine with and without opioid in contrast to a continuous paravertebral infusion of bupivacaine for post-thoracotomy pain. J Cardiothorac Vasc Anesth [Comparative Study Randomized Controlled Trial]. 2012;26(1):83–9.

    Article  CAS  Google Scholar 

  43. Liu SS, Bieltz M, Wukovits B, John RS. Prospective survey of patient-controlled epidural analgesia with bupivacaine and hydromorphone in 3736 postoperative orthopedic patients. Reg Anesth Pain Med [Research Support, Non-US Gov’t]. 2010;35(4):351–4.

    Article  CAS  Google Scholar 

  44. Kampe S, Weinreich G, Darr C, Eicker K, Stamatis G, Hachenberg T. The impact of epidural analgesia compared to systemic opioid-based analgesia with regard to length of hospital stay and recovery of bowel function: retrospective evaluation of 1555 patients undergoing thoracotomy. J Cardiothorac Surg [Comparative Study]. 2014;9:175.

    Article  Google Scholar 

  45. Zong J, Pollack GM. Morphine antinociception is enhanced in mdr1a gene-deficient mice. Pharm Res. 2000;17(6):749–53.

    Article  CAS  PubMed  Google Scholar 

  46. Leow KP, Wright AW, Cramond T, Smith MT. Determination of the serum protein binding of oxycodone and morphine using ultrafiltration. Ther Drug Monit. 1993;15(5):440–7.

    Article  CAS  PubMed  Google Scholar 

  47. De Gregori S, De Gregori M, Ranzani GN, Allegri M, Minella C, Regazzi M. Morphine metabolism, transport and brain disposition. Metab Brain Dis. 2012;27(1):1–5.

    Article  PubMed  CAS  Google Scholar 

  48. Roy SD, Flynn GL. Solubility and related physicochemical properties of narcotic analgesics. Pharm Res. 1988;5(9):580–6.

    Article  CAS  PubMed  Google Scholar 

  49. Hill HF, Coda BA, Tanaka A, Schaffer R. Multiple-dose evaluation of intravenous hydromorphone pharmacokinetics in normal human subjects. Anesthesia Aanalg [Research Support, US Gov’t, PHS]. 1991;72(3):330–6.

    CAS  Google Scholar 

  50. Parab PV, Ritschel WA, Coyle DE, Gregg RV, Denson DD. Pharmacokinetics of hydromorphone after intravenous, peroral and rectal administration to human subjects. Biopharm Drug Dispos [Clinical Trial Randomized Controlled Trial Research Support, Non-US Gov’t]. 1988;9(2):187–99.

    CAS  Google Scholar 

  51. Westerling DBH, Svedman P, Hoglund P. Analgesic and nonanalgesic effects of intravenous hydromorphone – relation to plasma concentrations in healthy volunteers. Pain Res Manage. 1996;1(2):86–92.

    Article  Google Scholar 

  52. Scholz J, Steinfath M, Schulz M. Clinical pharmacokinetics of alfentanil, fentanyl and sufentanil. An update. Clin Pharmacokinet [Review]. 1996;31(4):275–92.

    Article  CAS  Google Scholar 

  53. Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology [Research Support, Non-US Gov't]. 1992;76(3):334–41.

    CAS  Google Scholar 

  54. Kapila A, Glass PS, Jacobs JR, Muir KT, Hermann DJ, Shiraishi M, et al. Measured context-sensitive half-times of remifentanil and alfentanil. Anesthesiology [Clinical Trial Comparative Study Randomized Controlled Trial Research Support, Non-US Gov’t]. 1995;83(5):968–75.

    CAS  Google Scholar 

  55. Shafer SL, Varvel JR. Pharmacokinetics, pharmacodynamics, and rational opioid selection. Anesthesiology. 1991;74(1):53–63.

    Article  CAS  PubMed  Google Scholar 

  56. Meuldermans WE, Hurkmans RM, Heykants JJ. Plasma protein binding and distribution of fentanyl, sufentanil, alfentanil and lofentanil in blood. Arch Int Pharmacodyn Ther. 1982;257(1):4–19.

    CAS  PubMed  Google Scholar 

  57. Bovill JG, Sebel PS, Blackburn CL, Heykants J. The pharmacokinetics of alfentanil (r39209): a new opioid analgesic. Anesthesiology. 1982;57(6):439–43.

    Article  CAS  PubMed  Google Scholar 

  58. Scott LJ, Perry CM. Remifentanil: a review of its use during the induction and maintenance of general anaesthesia. Drugs. 2005;65(13):1793–823.

    Article  CAS  PubMed  Google Scholar 

  59. Chan K, Tse J, Jennings F, Orme ML. Pharmacokinetics of low-dose intravenous pethidine in patients with renal dysfunction. J Clin Pharmacol. 1987;27(7):516–22.

    Article  CAS  PubMed  Google Scholar 

  60. Inturrisi CE, Colburn WA, Kaiko RF, Houde RW, Foley KM. Pharmacokinetics and pharmacodynamics of methadone in patients with chronic pain. Clin Pharmacol Ther. 1987;41(4):392–401.

    Article  CAS  PubMed  Google Scholar 

  61. Muller H, Stoyanov M, Brahler A, Hempelmann G. Hemodynamic and respiratory effects of tramadol during nitrous oxide-oxygen-artificial respiration and in the postoperative period. Anaesthesist. 1982;31(11):604–10.

    CAS  PubMed  Google Scholar 

  62. Raffa RB, Haslego ML, Maryanoff CA, Villani FJ, Codd EE, Connelly CD, et al. Unexpected antinociceptive effect of the n-oxide (rwj 38705) of tramadol hydrochloride. J Pharmacol Exp Ther. 1996;278(3):1098–104.

    CAS  PubMed  Google Scholar 

  63. Lee CR, McTavish D, Sorkin EM. Tramadol. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in acute and chronic pain states. Drugs. 1993;46(2):313–40.

    Article  CAS  PubMed  Google Scholar 

  64. Barkin RL, Barkin SJ, Barkin DS. Propoxyphene (dextropropoxyphene): a critical review of a weak opioid analgesic that should remain in antiquity. Am J Ther. 2006;13(6):534–42.

    Article  PubMed  Google Scholar 

  65. Linz K, Christoph T, Tzschentke TM, Koch T, Schiene K, Gautrois M, et al. Cebranopadol: a novel potent analgesic nociceptin/orphanin fq peptide and opioid receptor agonist. J Pharmacol Exp Ther. 2014;349(3):535–48.

    Article  PubMed  CAS  Google Scholar 

  66. Schunk S, Linz K, Hinze C, Frormann S, Oberborsch S, Sundermann B, et al. Discovery of a potent analgesic nop and opioid receptor agonist: cebranopadol. ACS Med Chem Lett. 2014;5(8):857–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McClain DA, Hug CC Jr. Intravenous fentanyl kinetics. Clin Pharmacol Ther. 1980;28(1):106–14.

    Article  CAS  PubMed  Google Scholar 

  68. Pitsiu M, Wilmer A, Bodenham A, Breen D, Bach V, Bonde J, et al. Pharmacokinetics of remifentanil and its major metabolite, remifentanil acid, in icu patients with renal impairment. Br J Anaesth. 2004;92(4):493–503.

    Article  CAS  PubMed  Google Scholar 

  69. Westmoreland CL, Hoke JF, Sebel PS, Hug CC Jr, Muir KT. Pharmacokinetics of remifentanil (gi87084b) and its major metabolite (gi90291) in patients undergoing elective inpatient surgery. Anesthesiology. 1993;79(5):893–903.

    Article  CAS  PubMed  Google Scholar 

  70. Egan TD, Lemmens HJ, Fiset P, Hermann DJ, Muir KT, Stanski DR, et al. The pharmacokinetics of the new short-acting opioid remifentanil (gi87084b) in healthy adult male volunteers. Anesthesiology. 1993;79(5):881–92.

    Article  CAS  PubMed  Google Scholar 

  71. Bovill JG, Sebel PS, Blackburn CL, Oei-Lim V, Heykants JJ. The pharmacokinetics of sufentanil in surgical patients. Anesthesiology. 1984;61(5):502–6.

    Article  CAS  PubMed  Google Scholar 

  72. Stanski DR, Greenblatt DJ, Lowenstein E. Kinetics of intravenous and intramuscular morphine. Clin Pharmacol Ther. 1978;24(1):52–9.

    Article  CAS  PubMed  Google Scholar 

  73. Camu F, Gepts E, Rucquoi M, Heykants J. Pharmacokinetics of alfentanil in man. Anesth Analg. 1982;61(8):657–61.

    Article  CAS  PubMed  Google Scholar 

  74. Stanski DR, Paalzow L, Edlund PO. Morphine pharmacokinetics: Glc assay versus radioimmunoassay. J Pharm Sci. 1982;71(3):314–7.

    Article  CAS  PubMed  Google Scholar 

  75. Murphy MR, Hug CC Jr. Pharmacokinetics of intravenous morphine in patients anesthetized with enflurane-nitrous oxide. Anesthesiology. 1981;54(3):187–92.

    Article  CAS  PubMed  Google Scholar 

  76. Koska AJ 3rd, Kramer WG, Romagnoli A, Keats AS, Sabawala PB. Pharmacokinetics of high-dose meperidine in surgical patients. Anesth Analg. 1981;60(1):8–11.

    Article  PubMed  Google Scholar 

  77. Gourlay GK, Wilson PR, Glynn CJ. Pharmacodynamics and pharmacokinetics of methadone during the perioperative period. Anesthesiology. 1982;57(6):458–67.

    Article  CAS  PubMed  Google Scholar 

  78. Allegaert K, Holford N, Anderson BJ, Holford S, Stuber F, Rochette A, et al. Tramadol and o-desmethyl tramadol clearance maturation and disposition in humans: a pooled pharmacokinetic study. Clin Pharmacokinet. 2015;54(2):167–78.

    Article  CAS  PubMed  Google Scholar 

  79. Coda B, Tanaka A, Jacobson RC, Donaldson G, Chapman CR. Hydromorphone analgesia after intravenous bolus administration. Pain. 1997;71(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  80. Egan TD. Remifentanil pharmacokinetics and pharmacodynamics. A preliminary appraisal. Clin Pharmacokinet. 1995;29(2):80–94.

    Article  CAS  PubMed  Google Scholar 

  81. Egan TD, Minto CF, Hermann DJ, Barr J, Muir KT, Shafer SL. Remifentanil versus alfentanil: comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers. Anesthesiology. 1996;84(4):821–33.

    Article  CAS  PubMed  Google Scholar 

  82. Lotsch J. Pharmacokinetic-pharmacodynamic modeling of opioids. J Pain Symptom Manag. 2005;29(5 Suppl):S90–103.

    Article  CAS  Google Scholar 

  83. Dale O, Hoffer C, Sheffels P, Kharasch ED. Disposition of nasal, intravenous, and oral methadone in healthy volunteers. Clin Pharmacol Ther. 2002;72(5):536–45.

    Article  CAS  PubMed  Google Scholar 

  84. Rohdewald P, Granitzki HW, Neddermann E. Comparison of the analgesic efficacy of metamizole and tramadol in experimental pain. Pharmacology. 1988;37(4):209–17.

    Article  CAS  PubMed  Google Scholar 

  85. Vallner JJ, Stewart JT, Kotzan JA, Kirsten EB, Honigberg IL. Pharmacokinetics and bioavailability of hydromorphone following intravenous and oral administration to human subjects. J Clin Pharmacol. 1981;21(4):152–6.

    Article  CAS  PubMed  Google Scholar 

  86. Sawe J, Dahlstrom B, Paalzow L, Rane A. Morphine kinetics in cancer patients. Clin Pharmacol Ther. 1981;30(5):629–35.

    Article  CAS  PubMed  Google Scholar 

  87. Hasselstrom J, Sawe J. Morphine pharmacokinetics and metabolism in humans. Enterohepatic cycling and relative contribution of metabolites to active opioid concentrations. Clin Pharmacokinet. 1993;24(4):344–54.

    Article  CAS  PubMed  Google Scholar 

  88. Kharasch ED, Bedynek PS, Park S, Whittington D, Walker A, Hoffer C. Mechanism of ritonavir changes in methadone pharmacokinetics and pharmacodynamics: I. Evidence against cyp3a mediation of methadone clearance. Clin Pharmacol Ther. 2008;84(4):497–505.

    Article  CAS  PubMed  Google Scholar 

  89. Kharasch ED, Hoffer C, Whittington D, Walker A, Bedynek PS. Methadone pharmacokinetics are independent of cytochrome p4503a (cyp3a) activity and gastrointestinal drug transport: insights from methadone interactions with ritonavir/indinavir. Anesthesiology. 2009;110(3):660–72.

    Article  CAS  PubMed  Google Scholar 

  90. Chauvin M, Ferrier C, Haberer JP, Spielvogel C, Lebrault C, Levron JC, et al. Sufentanil pharmacokinetics in patients with cirrhosis. Anesth Analg. 1989;68(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  91. Egan TD, Huizinga B, Gupta SK, Jaarsma RL, Sperry RJ, Yee JB, et al. Remifentanil pharmacokinetics in obese versus lean patients. Anesthesiology. 1998;89(3):562–73.

    Article  CAS  PubMed  Google Scholar 

  92. Xia DY, Wang YH, Guo T, Li XL, Su XY, Zhao LS. Pharmacokinetics of tramadol in a diverse healthy chinese population. J Clin Pharm Ther. 2012;37(5):599–603.

    Article  CAS  PubMed  Google Scholar 

  93. Hartvig P, Tamsen A, Fagerlund C, Dahlstrom B. Pharmacokinetics of pethidine during anaesthesia and patient-controlled analgesic therapy. Acta Anaesthesiol Scand Suppl. 1982;74:52–4.

    Article  CAS  PubMed  Google Scholar 

  94. Bujedo BM. Spinal opioid bioavailability in postoperative pain. Pain Pract. 2014;14(4):350–64.

    Article  PubMed  Google Scholar 

  95. Reina MA, Pulido P, Castedo J, Villanueva MC, Lopez A, Sola RG. Characteristics and distribution of normal human epidural fat. Rev Esp Anestesiol Reanim. 2006;53(6):363–72.

    CAS  PubMed  Google Scholar 

  96. Sandler AN, Stringer D, Panos L, Badner N, Friedlander M, Koren G, et al. A randomized, double-blind comparison of lumbar epidural and intravenous fentanyl infusions for postthoracotomy pain relief. Analgesic, pharmacokinetic, and respiratory effects. Anesthesiology. 1992;77(4):626–34.

    Article  CAS  PubMed  Google Scholar 

  97. Armstrong KP, Kennedy B, Watson JT, Morley-Forster PK, Yee I, Butler R. Epinephrine reduces the sedative side effects of epidural sufentanil for labour analgesia. Can J Anaesth. 2002;49(1):72–80.

    Article  PubMed  Google Scholar 

  98. Klepper ID, Sherrill DL, Boetger CL, Bromage PR. Analgesic and respiratory effects of extradural sufentanil in volunteers and the influence of adrenaline as an adjuvant. Br J Anaesth. 1987;59(9):1147–56.

    Article  CAS  PubMed  Google Scholar 

  99. DeBalli P, Breen TW. Intrathecal opioids for combined spinal-epidural analgesia during labour. CNS Drugs. 2003;17(12):889–904.

    Article  CAS  PubMed  Google Scholar 

  100. Ummenhofer WC, Arends RH, Shen DD, Bernards CM. Comparative spinal distribution and clearance kinetics of intrathecally administered morphine, fentanyl, alfentanil, and sufentanil. Anesthesiology. 2000;92(3):739–53.

    Article  CAS  PubMed  Google Scholar 

  101. Hansdottir V, Hedner T, Woestenborghs R, Nordberg G. The csf and plasma pharmacokinetics of sufentanil after intrathecal administration. Anesthesiology. 1991;74(2):264–9.

    Article  CAS  PubMed  Google Scholar 

  102. Nordberg G, Hedner T, Mellstrand T, Dahlstrom B. Pharmacokinetic aspects of intrathecal morphine analgesia. Anesthesiology. 1984;60(5):448–54.

    Article  CAS  PubMed  Google Scholar 

  103. Liston HL, Markowitz JS, DeVane CL. Drug glucuronidation in clinical psychopharmacology. J Clin Psychopharmacol. 2001;21(5):500–15.

    Article  CAS  PubMed  Google Scholar 

  104. Coffman BL, Rios GR, King CD, Tephly TR. Human ugt2b7 catalyzes morphine glucuronidation. Drug Metab Dispos. 1997;25(1):1–4.

    CAS  PubMed  Google Scholar 

  105. Green MD, King CD, Mojarrabi B, Mackenzie PI, Tephly TR. Glucuronidation of amines and other xenobiotics catalyzed by expressed human udp-glucuronosyltransferase 1a3. Drug Metab Dispos. 1998;26(6):507–12.

    CAS  PubMed  Google Scholar 

  106. Sverrisdottir E, Lund TM, Olesen AE, Drewes AM, Christrup LL, Kreilgaard M. A review of morphine and morphine-6-glucuronide's pharmacokinetic-pharmacodynamic relationships in experimental and clinical pain. Eur J Pharm Sci. 2015;74:45–62.

    Article  CAS  PubMed  Google Scholar 

  107. Osborne R, Joel S, Grebenik K, Trew D, Slevin M. The pharmacokinetics of morphine and morphine glucuronides in kidney failure. Clin Pharmacol Ther. 1993;54(2):158–67.

    Article  CAS  PubMed  Google Scholar 

  108. Ahlers SJ, Valitalo PA, Peeters MY, Gulik LV, van Dongen EP, Dahan A, et al. Morphine glucuronidation and elimination in intensive care patients: a comparison with healthy volunteers. Anesth Analg. 2015;121(5):1261–73.

    Article  CAS  PubMed  Google Scholar 

  109. Ferslew BC, Johnston CK, Tsakalozou E, Bridges AS, Paine MF, Jia W, et al. Altered morphine glucuronide and bile acid disposition in patients with nonalcoholic steatohepatitis. Clin Pharmacol Ther. 2015;97(4):419–27.

    Article  CAS  PubMed  Google Scholar 

  110. Hasselstrom J, Eriksson S, Persson A, Rane A, Svensson JO, Sawe J. The metabolism and bioavailability of morphine in patients with severe liver cirrhosis. Br J Clin Pharmacol. 1990;29(3):289–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zheng M, McErlane KM, Ong MC. Hydromorphone metabolites: isolation and identification from pooled urine samples of a cancer patient. Xenobiotica. 2002;32(5):427–39.

    Article  CAS  PubMed  Google Scholar 

  112. Wright AW, Mather LE, Smith MT. Hydromorphone-3-glucuronide: a more potent neuro-excitant than its structural analogue, morphine-3-glucuronide. Life Sci. 2001;69(4):409–20.

    Article  CAS  PubMed  Google Scholar 

  113. Smith MT. Neuroexcitatory effects of morphine and hydromorphone: evidence implicating the 3-glucuronide metabolites. Clin Exp Pharmacol Physiol. 2000;27(7):524–8.

    Article  CAS  PubMed  Google Scholar 

  114. Labroo RB, Paine MF, Thummel KE, Kharasch ED. Fentanyl metabolism by human hepatic and intestinal cytochrome p450 3a4: implications for interindividual variability in disposition, efficacy, and drug interactions. Drug Metab Dispos. 1997;25(9):1072–80.

    CAS  PubMed  Google Scholar 

  115. Rosow CE. Sufentanil citrate: a new opioid analgesic for use in anesthesia. Pharmacotherapy. 1984;4(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  116. Tegeder I, Lotsch J, Geisslinger G. Pharmacokinetics of opioids in liver disease. Clin Pharmacokinet. 1999;37(1):17–40.

    Article  CAS  PubMed  Google Scholar 

  117. Breen D, Wilmer A, Bodenham A, Bach V, Bonde J, Kessler P, et al. Offset of pharmacodynamic effects and safety of remifentanil in intensive care unit patients with various degrees of renal impairment. Crit Care. 2004;8(1):R21–30.

    Article  PubMed  Google Scholar 

  118. Hoke JF, Shlugman D, Dershwitz M, Michalowski P, Malthouse-Dufore S, Connors PM, et al. Pharmacokinetics and pharmacodynamics of remifentanil in persons with renal failure compared with healthy volunteers. Anesthesiology. 1997;87(3):533–41.

    Article  CAS  PubMed  Google Scholar 

  119. Stambaugh JE, Wainer IW, Sanstead JK, Hemphill DM. The clinical pharmacology of meperidine–comparison of routes of administration. J Clin Pharmacol. 1976;16(5–6):245–56.

    Article  CAS  PubMed  Google Scholar 

  120. Kaiko RF, Foley KM, Grabinski PY, Heidrich G, Rogers AG, Inturrisi CE, et al. Central nervous system excitatory effects of meperidine in cancer patients. Ann Neurol. 1983;13(2):180–5.

    Article  CAS  PubMed  Google Scholar 

  121. Schlick KH, Hemmen TM, Lyden PD. Seizures and meperidine: overstated and underutilized. Ther Hypothermia Temp Manag. 2015;5(4):223–7.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ferrari A, Coccia CP, Bertolini A, Sternieri E. Methadone–metabolism, pharmacokinetics and interactions. Pharmacol Res. 2004;50(6):551–9.

    Article  CAS  PubMed  Google Scholar 

  123. Subrahmanyam V, Renwick AB, Walters DG, Young PJ, Price RJ, Tonelli AP, et al. Identification of cytochrome p-450 isoforms responsible for cis-tramadol metabolism in human liver microsomes. Drug Metab Dispos. 2001;29(8):1146–55.

    CAS  PubMed  Google Scholar 

  124. Dayer P, Desmeules J, Collart L. Pharmacology of tramadol. Drugs. 1997;53(Suppl 2):18–24.

    Article  CAS  PubMed  Google Scholar 

  125. Kneip C, Terlinden R, Beier H, Chen G. Investigations into the drug-drug interaction potential of tapentadol in human liver microsomes and fresh human hepatocytes. Drug Metab Lett. 2008;2(1):67–75.

    Article  CAS  PubMed  Google Scholar 

  126. Schuttler J, Albrecht S, Breivik H, Osnes S, Prys-Roberts C, Holder K, et al. A comparison of remifentanil and alfentanil in patients undergoing major abdominal surgery. Anaesthesia. 1997;52(4):307–17.

    Article  CAS  PubMed  Google Scholar 

  127. Hogue CW Jr, Bowdle TA, O’Leary C, Duncalf D, Miguel R, Pitts M, et al. A multicenter evaluation of total intravenous anesthesia with remifentanil and propofol for elective inpatient surgery. Anesth Analg. 1996;83(2):279–85.

    Article  CAS  PubMed  Google Scholar 

  128. Goodarzi M, Narasimhan RR. The effect of large-dose intrathecal opioids on the autonomic nervous system. Anesth Analg. 2001;93(2):456–9, 454th contents page

    CAS  PubMed  Google Scholar 

  129. Kaye AD, Hoover JM, Kaye AJ, Ibrahim IN, Fox C, Bajwa A, et al. Morphine, opioids, and the feline pulmonary vascular bed. Acta Anaesthesiol Scand. 2008;52(7):931–7.

    Article  CAS  PubMed  Google Scholar 

  130. Crawford DC, Fell D, Achola KJ, Smith G. Effects of alfentanil on the pressor and catecholamine responses to tracheal intubation. Br J Anaesth. 1987;59(6):707–12.

    Article  CAS  PubMed  Google Scholar 

  131. Ebert TJ, Ficke DJ, Arain SR, Holtz MN, Shankar H. Vasodilation from sufentanil in humans. Anesth Analg. 2005;101(6):1677–80.

    Article  CAS  PubMed  Google Scholar 

  132. Thompson JP, Hall AP, Russell J, Cagney B, Rowbotham DJ. Effect of remifentanil on the haemodynamic response to orotracheal intubation. Br J Anaesth. 1998;80(4):467–9.

    Article  CAS  PubMed  Google Scholar 

  133. Arnold RW, Jensen PA, Kovtoun TA, Maurer SA, Schultz JA. The profound augmentation of the oculocardiac reflex by fast acting opioids. Binocul Vis Strabismus Q. 2004;19(4):215–22.

    PubMed  Google Scholar 

  134. Flacke JW, Flacke WE, Bloor BC, Van Etten AP, Kripke BJ. Histamine release by four narcotics: a double-blind study in humans. Anesth Analg. 1987;66(8):723–30.

    Article  CAS  PubMed  Google Scholar 

  135. Fujii K, Iranami H, Nakamura Y, Hatano Y. High-dose remifentanil suppresses sinoatrial conduction and sinus node automaticity in pediatric patients under propofol-based anesthesia. Anesth Analg. 2011;112(5):1169–73.

    Article  CAS  PubMed  Google Scholar 

  136. Fujii K, Iranami H, Nakamura Y, Hatano Y. Fentanyl added to propofol anesthesia elongates sinus node recovery time in pediatric patients with paroxysmal supraventricular tachycardia. Anesth Analg. 2009;108(2):456–60.

    Article  CAS  PubMed  Google Scholar 

  137. Grodofsky S, Edson E, Huang S, Speck RM, Hatchimonji J, Lacy K, et al. The qtc effect of low-dose methadone for chronic pain: a prospective pilot study. Pain Med. 2015;16(6):1112–21.

    Article  PubMed  Google Scholar 

  138. Roden DM. Drug-induced prolongation of the qt interval. N Engl J Med. 2004;350(10):1013–22.

    Article  CAS  PubMed  Google Scholar 

  139. Kaye AD, Hoover JM, Baber SR, Ibrahim IN, Phelps J, Fields A, et al. The effects of meperidine in the pulmonary vascular bed of the cat. J Cardiothorac Vasc Anesth. 2006;20(5):691–5.

    Article  CAS  PubMed  Google Scholar 

  140. Santiago TV, Edelman NH. Opioids and breathing. J Appl Physiol. 1985;59(6):1675–85.

    Article  CAS  PubMed  Google Scholar 

  141. Henderson F, May WJ, Gruber RB, Discala JF, Puskovic V, Young AP, et al. Role of central and peripheral opiate receptors in the effects of fentanyl on analgesia, ventilation and arterial blood-gas chemistry in conscious rats. Respir Physiol Neurobiol. 2014;191:95–105.

    Article  CAS  PubMed  Google Scholar 

  142. Weil JV, McCullough RE, Kline JS, Sodal IE. Diminished ventilatory response to hypoxia and hypercapnia after morphine in normal man. N Engl J Med. 1975;292(21):1103–6.

    Article  CAS  PubMed  Google Scholar 

  143. Dahan A, Sarton E, Teppema L, Olievier C, Nieuwenhuijs D, Matthes HW, et al. Anesthetic potency and influence of morphine and sevoflurane on respiration in mu-opioid receptor knockout mice. Anesthesiology. 2001;94(5):824–32.

    Article  CAS  PubMed  Google Scholar 

  144. Lonergan T, Goodchild AK, Christie MJ, Pilowsky PM. Presynaptic delta opioid receptors differentially modulate rhythm and pattern generation in the ventral respiratory group of the rat. Neuroscience. 2003;121(4):959–73.

    Article  CAS  PubMed  Google Scholar 

  145. Shook JE, Watkins WD, Camporesi EM. Differential roles of opioid receptors in respiration, respiratory disease, and opiate-induced respiratory depression. Am Rev Respir Dis. 1990;142(4):895–909.

    Article  CAS  PubMed  Google Scholar 

  146. Yoo YC, Na S, Jeong JJ, Choi EM, Moon BE, Lee JR. Dose-dependent attenuation by fentanyl on cough during emergence from general anesthesia. Acta Anaesthesiol Scand. 2011;55(10):1215–20.

    Article  CAS  PubMed  Google Scholar 

  147. Tagaito Y, Isono S, Nishino T. Upper airway reflexes during a combination of propofol and fentanyl anesthesia. Anesthesiology. 1998;88(6):1459–66.

    Article  CAS  PubMed  Google Scholar 

  148. Freye E, Buhl R, Ciaramelli F. Opioids with different affinity for subreceptors induce different effects on early and late sensory evoked potentials (sep) in man. NIDA Res Monogr. 1986;75:551–4.

    CAS  PubMed  Google Scholar 

  149. Graversen C, Malver LP, Kurita GP, Staahl C, Christrup LL, Sjogren P, et al. Altered frequency distribution in the electroencephalogram is correlated to the analgesic effect of remifentanil. Basic Clin Pharmacol Toxicol. 2015;116(5):414–22.

    Article  CAS  PubMed  Google Scholar 

  150. Kalkman CJ, Leyssius AT, Bovill JG. Influence of high-dose opioid anesthesia on posterior tibial nerve somatosensory cortical evoked potentials: effects of fentanyl, sufentanil, and alfentanil. J Cardiothorac Anesth. 1988;2(6):758–64.

    Article  CAS  PubMed  Google Scholar 

  151. Wang AC, Than KD, Etame AB, La Marca F, Park P. Impact of anesthesia on transcranial electric motor evoked potential monitoring during spine surgery: a review of the literature. Neurosurg Focus. 2009;27(4):E7.

    Article  PubMed  Google Scholar 

  152. Goodarzi M, Shier NH, Grogan DP. Effect of intrathecal opioids on somatosensory-evoked potentials during spinal fusion in children. Spine (Phila Pa 1976). 1996;21(13):1565–8.

    Article  CAS  Google Scholar 

  153. Chapman CR, Hill HF, Saeger L, Gavrin J. Profiles of opioid analgesia in humans after intravenous bolus administration: Alfentanil, fentanyl and morphine compared on experimental pain. Pain. 1990;43(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  154. Katz N, Mazer NA. The impact of opioids on the endocrine system. Clin J Pain. 2009;25(2):170–5.

    Article  PubMed  Google Scholar 

  155. Ragni G, De Lauretis L, Bestetti O, Sghedoni D, Gambaro V. Gonadal function in male heroin and methadone addicts. Int J Androl. 1988;11(2):93–100.

    Article  CAS  PubMed  Google Scholar 

  156. Colameco S, Coren JS. Opioid-induced endocrinopathy. J Am Osteopath Assoc. 2009;109(1):20–5.

    PubMed  Google Scholar 

  157. Gourlay GK, Cherry DA, Plummer JL, Armstrong PJ, Cousins MJ. The influence of drug polarity on the absorption of opioid drugs into csf and subsequent cephalad migration following lumbar epidural administration: application to morphine and pethidine. Pain. 1987;31(3):297–305.

    Article  CAS  PubMed  Google Scholar 

  158. Cousins MJ, Mather LE. Intrathecal and epidural administration of opioids. Anesthesiology. 1984;61(3):276–310.

    Article  CAS  PubMed  Google Scholar 

  159. Shapiro A, Zohar E, Zaslansky R, Hoppenstein D, Shabat S, Fredman B. The frequency and timing of respiratory depression in 1524 postoperative patients treated with systemic or neuraxial morphine. J Clin Anesth. 2005;17(7):537–42.

    Article  CAS  PubMed  Google Scholar 

  160. Fuller JG, McMorland GH, Douglas MJ, Palmer L. Epidural morphine for analgesia after caesarean section: a report of 4880 patients. Can J Anaesth. 1990;37(6):636–40.

    Article  CAS  PubMed  Google Scholar 

  161. Lee LA, Caplan RA, Stephens LS, Posner KL, Terman GW, Voepel-Lewis T, et al. Postoperative opioid-induced respiratory depression: a closed claims analysis. Anesthesiology. 2015;122(3):659–65.

    Article  CAS  PubMed  Google Scholar 

  162. Zedler B, Xie L, Wang L, Joyce A, Vick C, Kariburyo F, et al. Risk factors for serious prescription opioid-related toxicity or overdose among veterans health administration patients. Pain Med. 2014;15(11):1911–29.

    Article  PubMed  Google Scholar 

  163. Weingarten TN, Herasevich V, McGlinch MC, Beatty NC, Christensen ED, Hannifan SK, et al. Predictors of delayed postoperative respiratory depression assessed from naloxone administration. Anesth Analg. 2015;121(2):422–9.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Ramachandran SK, Haider N, Saran KA, Mathis M, Kim J, Morris M, et al. Life-threatening critical respiratory events: a retrospective study of postoperative patients found unresponsive during analgesic therapy. J Clin Anesth. 2011;23(3):207–13.

    Article  PubMed  Google Scholar 

  165. Taylor S, Kirton OC, Staff I, Kozol RA. Postoperative day one: a high risk period for respiratory events. Am J Surg. 2005;190(5):752–6.

    Article  PubMed  Google Scholar 

  166. Bromage PR, Camporesi EM, Durant PA, Nielsen CH. Rostral spread of epidural morphine. Anesthesiology. 1982;56(6):431–6.

    Article  CAS  PubMed  Google Scholar 

  167. Liu XY, Liu ZC, Sun YG, Ross M, Kim S, Tsai FF, et al. Unidirectional cross-activation of grpr by mor1d uncouples itch and analgesia induced by opioids. Cell. 2011;147(2):447–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Youssef N, Orlov D, Alie T, Chong M, Cheng J, Thabane L, et al. What epidural opioid results in the best analgesia outcomes and fewest side effects after surgery?: a meta-analysis of randomized controlled trials. Anesth Analg. 2014;119(4):965–77.

    Article  CAS  PubMed  Google Scholar 

  169. Apfel CC, Laara E, Koivuranta M, Greim CA, Roewer N. A simplified risk score for predicting postoperative nausea and vomiting: conclusions from cross-validations between two centers. Anesthesiology. 1999;91(3):693–700.

    Article  CAS  PubMed  Google Scholar 

  170. Smith HS, Laufer A. Opioid induced nausea and vomiting. Eur J Pharmacol. 2014;722:67–78.

    Article  CAS  PubMed  Google Scholar 

  171. Coluzzi F, Rocco A, Mandatori I, Mattia C. Non-analgesic effects of opioids: opioid-induced nausea and vomiting: mechanisms and strategies for their limitation. Curr Pharm Des. 2012;18(37):6043–52.

    Article  CAS  PubMed  Google Scholar 

  172. Breitfeld C, Peters J, Vockel T, Lorenz C, Eikermann M. Emetic effects of morphine and piritramide. Br J Anaesth. 2003;91(2):218–23.

    Article  CAS  PubMed  Google Scholar 

  173. Kuipers PW, Kamphuis ET, van Venrooij GE, van Roy JP, Ionescu TI, Knape JT, et al. Intrathecal opioids and lower urinary tract function: a urodynamic evaluation. Anesthesiology. 2004;100(6):1497–503.

    Article  CAS  PubMed  Google Scholar 

  174. Matsumoto S, Levendusky MC, Longhurst PA, Levin RM, Millington WR. Activation of mu opioid receptors in the ventrolateral periaqueductal gray inhibits reflex micturition in anesthetized rats. Neurosci Lett. 2004;363(2):116–9.

    Article  CAS  PubMed  Google Scholar 

  175. Noto H, Roppolo JR, de Groat WC, Nishizawa O, Sugaya K, Tsuchida S. Opioid modulation of the micturition reflex at the level of the pontine micturition center. Urol Int. 1991;47(Suppl 1):19–22.

    Article  PubMed  Google Scholar 

  176. Hisamitsu T, de Groat WC. The inhibitory effect of opioid peptides and morphine applied intrathecally and intracerebroventricularly on the micturition reflex in the cat. Brain Res. 1984;298(1):51–65.

    Article  CAS  PubMed  Google Scholar 

  177. Shook JE, Pelton JT, Hruby VJ, Burks TF. Peptide opioid antagonist separates peripheral and central opioid antitransit effects. J Pharmacol Exp Ther. 1987;243(2):492–500.

    CAS  PubMed  Google Scholar 

  178. Wood JD, Galligan JJ. Function of opioids in the enteric nervous system. Neurogastroenterol Motil. 2004;16(Suppl 2):17–28.

    Article  PubMed  Google Scholar 

  179. Wood JD. Intracellular study of effects of morphine on electrical activity of myenteric neurons in cat small intestine. Gastroenterology. 1980;79(6):1222–30.

    Article  CAS  PubMed  Google Scholar 

  180. Farzi A, Halicka J, Mayerhofer R, Frohlich EE, Tatzl E, Holzer P. Toll-like receptor 4 contributes to the inhibitory effect of morphine on colonic motility in vitro and in vivo. Sci Rep. 2015;5:9499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ono H, Nakamura A, Matsumoto K, Horie S, Sakaguchi G, Kanemasa T. Circular muscle contraction in the mice rectum plays a key role in morphine-induced constipation. Neurogastroenterol Motil. 2014;26(10):1396–407.

    Article  CAS  PubMed  Google Scholar 

  182. Friswell J, Phillips C, Holding J, Morgan CJ, Brandner B, Curran HV. Acute effects of opioids on memory functions of healthy men and women. Psychopharmacology. 2008;198(2):243–50.

    Article  CAS  PubMed  Google Scholar 

  183. Wang JH, Rizak JD, Chen YM, Li L, Hu XT, Ma YY. Interactive effects of morphine and dopaminergic compounds on spatial working memory in rhesus monkeys. Neurosci Bull. 2013;29(1):37–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Joshi GP, Warner DS, Twersky RS, Fleisher LA. A comparison of the remifentanil and fentanyl adverse effect profile in a multicenter phase iv study. J Clin Anesth. 2002;14(7):494–9.

    Article  CAS  PubMed  Google Scholar 

  185. Sokoll MD, Hoyt JL, Gergis SD. Studies in muscle rigidity, nitrous oxide, and narcotic analgesic agents. Anesth Analg. 1972;51(1):16–20.

    Article  CAS  PubMed  Google Scholar 

  186. Genc E, Havemann U, Tzoneva-Tyutyulkova N, Kuschinsky K. Motility, rigidity and turnover of dopamine in the striatum after administration of morphine to rats: a re-evaluation of their mechanisms. Neuropharmacology. 1983;22(4):471–6.

    Article  CAS  PubMed  Google Scholar 

  187. Vankova ME, Weinger MB, Chen DY, Bronson JB, Motis V, Koob GF. Role of central mu, delta-1, and kappa-1 opioid receptors in opioid-induced muscle rigidity in the rat. Anesthesiology. 1996;85(3):574–83.

    Article  CAS  PubMed  Google Scholar 

  188. Yi P, Pryzbylkowski P. Opioid induced hyperalgesia. Pain Med. 2015;16(Suppl 1):S32–6.

    Article  PubMed  Google Scholar 

  189. Jamison RN, Mao J. Opioid analgesics. Mayo Clin Proc. 2015;90(7):957–68.

    Article  CAS  PubMed  Google Scholar 

  190. Guignard B, Bossard AE, Coste C, Sessler DI, Lebrault C, Alfonsi P, et al. Acute opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirement. Anesthesiology. 2000;93(2):409–17.

    Article  CAS  PubMed  Google Scholar 

  191. Chia YY, Liu K, Wang JJ, Kuo MC, Ho ST. Intraoperative high dose fentanyl induces postoperative fentanyl tolerance. Can J Anaesth. 1999;46(9):872–7.

    Article  CAS  PubMed  Google Scholar 

  192. Joly V, Richebe P, Guignard B, Fletcher D, Maurette P, Sessler DI, et al. Remifentanil-induced postoperative hyperalgesia and its prevention with small-dose ketamine. Anesthesiology. 2005;103(1):147–55.

    Article  CAS  PubMed  Google Scholar 

  193. Compton P, Kehoe P, Sinha K, Torrington MA, Ling W. Gabapentin improves cold-pressor pain responses in methadone-maintained patients. Drug Alcohol Depend. 2010;109(1–3):213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Cuignet O, Pirson J, Soudon O, Zizi M. Effects of gabapentin on morphine consumption and pain in severely burned patients. Burns. 2007;33(1):81–6.

    Article  PubMed  Google Scholar 

  195. Gillman PK. Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity. Br J Anaesth. 2005;95(4):434–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan P. Cata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Cata, J.P., Bhavsar, S.P. (2018). Pharmacology of Opioids. In: Farag, E., Argalious, M., Tetzlaff, J.E., Sharma, D. (eds) Basic Sciences in Anesthesia. Springer, Cham. https://doi.org/10.1007/978-3-319-62067-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62067-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62065-7

  • Online ISBN: 978-3-319-62067-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics