Skip to main content

Pharmacology of Inhaled Anesthetics

  • Chapter
  • First Online:
Basic Sciences in Anesthesia
  • The original version of this chapter was revised. The abbreviation “MAP mean arterial pressure” was additionally present in the footnote of Table 10.2. This has now been removed. The correction to this chapter can be found at https://doi.org/10.1007/978-3-319-62067-1_39

Abstract

Inhalational agents are chemical compounds that produce general anesthesia and are delivered via inhalation. They are used in anesthesia primarily to produce a loss of consciousness, but may have other lesser effects such as muscle relaxation and analgesia. Nitrous oxide is the only currently used inorganic inhalational agent. Volatile anesthetics, including halothane, methoxyflurane, enflurane, isoflurane, desflurane, and sevoflurane, exert their effects at multiple sites throughout the central nervous system. Each agent has its own specific chemical structure that leads to different solubilities, potencies, biotransformation, and side effects of each drug. The modern volatile inhalational agents of fluorinated ethers including isoflurane, sevoflurane, and desflurane were introduced in the 1980s. The modern volatile agents mainly resist metabolism and make organ toxicity unlikely. As research continues, the noble gas, xenon, has a potential for future development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Change history

  • 14 July 2021

    A correction has been published.

References

  1. Neuman GG, Sidebotham G, Negoianu E, et al. Laparoscopy explosion hazards with nitrous oxide. Anesthesiology. 1993;78(5):875–9.

    Article  CAS  PubMed  Google Scholar 

  2. Bovill JG. Inhalation anaesthesia from dietyl ether to xenon. Handb Exp Pharmacol. 2008;182:121–42.

    Article  CAS  Google Scholar 

  3. Yasuda N, Targ AG, Eiger EI 2nd. Solubility of I-653, sevoflurane, isoflurane, and halothane in human tissues. Anesth Analg. 1989;69(3):370–3.

    Article  CAS  PubMed  Google Scholar 

  4. Fernandez-Guisasola J, Gomez-Arnau JI, Cabrera Y, et al. Association between nitrous oxide and the incidence of postoperative nausea and vomiting in adults: a systematic review and meta-analysis. Anaesthesia. 2010;65(4):378–87.

    Article  Google Scholar 

  5. Gmehling J, Onken U, Schulte HW. Vapor-liquid equilibria for the binary systems diethyl ether-halothane (1, 1, 1-trifluoro-2-bromo-2-chloroethane), halothane-methanol, and diethyl ether-methanol. J Chem Eng Data. 1980;25(1):29–32.

    Article  CAS  Google Scholar 

  6. Stachnik J. Inhaled anesthetic agents. Am J Health Syst Pharm. 2006;63(7):623–34.

    Article  CAS  PubMed  Google Scholar 

  7. Cousins MJ, Greenstein LR, Hitt BA, Mazze RI. Metabolism and renal effects of enflurane in man. Anesthesiology. 1976;44(1):44–53.

    Article  CAS  PubMed  Google Scholar 

  8. Eger EI 2nd. Characteristics of anesthetic agents used for induction and maintenance of general anesthesia. Am J Health Syst Pharm. 2004;61(Suppl 4):S3–10.

    Article  CAS  PubMed  Google Scholar 

  9. Eger EI 2nd. Desflurane animal and human pharmacology: aspects of kinetics, safety, and MAC. Anesth Analg. 1992;75(4 Suppl):S3–7. discussion S8-9.

    CAS  PubMed  Google Scholar 

  10. Andrews JJ, Johnston RV Jr. The new Tec 6 desflurane vaporizer. Anesth Analg. 1993;76(6):1338–41.

    Article  CAS  PubMed  Google Scholar 

  11. Eger EI 2nd. The pharmacology of inhaled anesthetics. J Crit Care. 2005;24(2):89–100.

    CAS  Google Scholar 

  12. Franks NP, Lieb WR. Where do general anaesthetics act? Nature. 1978;274(5669):339–42.

    Article  CAS  PubMed  Google Scholar 

  13. Franks NP, Lieb WR. Do general anaesthetics act by competitive binding to specific receptors? Nature. 1984;310(5978):599–601.

    Article  CAS  PubMed  Google Scholar 

  14. Sonner JM, Antognini JF, Dutton RC, et al. Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration. Anesth Analg. 2003;97(3):718–40.

    Article  CAS  PubMed  Google Scholar 

  15. Narahashi T, Aistrup GL, Lindstrom JM, et al. Ion channel modulation as the basis for general anesthesia. Toxicol Lett. 1998;100-101:185–91.

    Article  CAS  PubMed  Google Scholar 

  16. Frazer MJ, Lynch C 3rd. Halothane and isoflurane effects on Ca2+ fluxes of isolated myocardial sarcoplasmic reticulum. Anesthesiology. 1992;77(2):316–23.

    Article  CAS  PubMed  Google Scholar 

  17. Franks NP, Lieb WR. Which molecular targets are most relevant to general anaesthesia? Toxicol Lett. 1998;100-101:1–8.

    Article  CAS  PubMed  Google Scholar 

  18. Franks NP, Lieb WR. Molecular and cellular mechanisms of general anaesthesia. Nature. 1994;367(6464):607–14.

    Article  CAS  PubMed  Google Scholar 

  19. Jones MV, Harrison NL. Effects of volatile anesthetics on the kinetics of inhibitory postsynaptic currents in cultured rat hippocampal neurons. J Neurophysiol. 1993;70(4):1339–49.

    Article  CAS  PubMed  Google Scholar 

  20. Zimmerman SA, Jones MV, Harrison NL. Potentiation of gamma-aminobutyric acidA receptor Cl- current correlates with in vivo anesthetic potency. J Pharmacol Exp Ther. 1994;270(3):987–91.

    CAS  PubMed  Google Scholar 

  21. Yamakura T, Harris RA. Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels. Comparison with isoflurane and ethanol. Anesthesiology. 2000;93(4):1095–101.

    Article  CAS  PubMed  Google Scholar 

  22. Mennerick S, Jetovic-Todorovic V, Todorovic SM, et al. Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci. 1998;18(23):9716–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gyulai FE, Mintun MA, Firestone LLFE. Dose-dependent enhancement of in vivo GABA(A)-benzodiazepine receptor binding by isoflurane. Anesthesiology. 2001;95(3):585–93.

    Article  CAS  PubMed  Google Scholar 

  24. Patel AJ, Honore E, Lesage F, et al. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci. 1999;2(5):422–6.

    Article  CAS  PubMed  Google Scholar 

  25. Hemmings HC Jr. Sodium channels and the synaptic mechanisms of inhaled anaesthetics. Br J Anaesth. 2009;103(1):61–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nishikawa K, MacIver MB. Excitatory synaptic transmission mediated by NMDA receptors is more sensitive to isoflurane than are non-NMDA receptor-mediated responses. Anesthesiology. 2000;92(1):228–36.

    Article  CAS  PubMed  Google Scholar 

  27. Kendig JJ. In vitro networks: subcortical mechanisms of anaesthetic action. Br J Anaesth. 2002;89(1):91–101.

    Article  CAS  PubMed  Google Scholar 

  28. Daniels S, Roberts RJ. Post-synaptic inhibitory mechanisms of anaesthesia; glycine receptors. Toxicol Lett. 1998;100-101:71–6.

    Article  CAS  PubMed  Google Scholar 

  29. Cheng G, Kendig JJ. Enflurane directly depresses glutamate AMPA and NMDA currents in mouse spinal cord motor neurons independent of actions on GABAA or glycine receptors. Anesthesiology. 2000;93(4):1075–84.

    Article  CAS  PubMed  Google Scholar 

  30. Flood P, Ramirez-Latorre J, Role L. Alpha 4 beta 2 neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited by isoflurane and propofol, but alpha 7-type nicotinic acetylcholine receptors are unaffected. Anesthesiology. 1997;86(4):859–65.

    Article  CAS  PubMed  Google Scholar 

  31. Raines DE, Claycomb RJ, Forman SA. Nonhalogenated anesthetic alkanes and perhalogenated nonimmobilizing alkanes inhibit alpha(4)beta(2) neuronal nicotinic acetylcholine receptors. Anesth Analg. 2002;95(3):573–7.

    Article  CAS  PubMed  Google Scholar 

  32. Cordero-Erausquin M, Marubio LM, Klink R, Changeux JP. Nicotinic receptor function: new perspectives from knockout mice. Trends Pharmacol Sci. 2000;21(6):211–7.

    Article  CAS  PubMed  Google Scholar 

  33. Campagna JA, Miller KW, Forman SA, Mechanisms JA. of actions of inhaled anesthetics. N Engl J Med. 2003;348(21):2110–24.

    Article  CAS  PubMed  Google Scholar 

  34. Eger EI 2nd, Stevens WC, Cromwell TH. The electroencephalogram in man anesthetized with forane. Anesthesiology. 1971;35(5):504–8.

    Article  CAS  PubMed  Google Scholar 

  35. Oshima EE, Urabe N, Shingu K, Mori K. Anticonvulsant actions of enflurane on epilepsy models in cats. Anesthesiology. 1985;63(1):29–40.

    Article  CAS  PubMed  Google Scholar 

  36. Koblin DD, Eger EI 2nd, Johnson BH, et al. Are Convulsant Gases Also Anesthetics? Anesth Analg. 1981;60(7):464–70.

    Article  CAS  PubMed  Google Scholar 

  37. Neigh JL, Garman JK, Harp JR. The electroencephalographic pattern during anesthesia with ethrane: effects of depth of anesthesia, PaCo2, and nitrous oxide. Anesthesiology. 1971;35(5):482–7.

    Article  CAS  PubMed  Google Scholar 

  38. Oda Y, Toriyama S, Tanaka K, et al. The effect of dexmedetomidine on electrocorticography in patients with temporal lobe epilepsy under sevoflurane anesthesia. Anesth Analg. 2007;105(5):1272–7.

    Article  PubMed  CAS  Google Scholar 

  39. Kaisti KK, Jaaskelainen SK, Rinne JO, et al. Epileptiform discharges during 2 MAC sevoflurane anesthesia in two healthy volunteers. Anesthesiology. 1999;91(6):1952–5.

    Article  CAS  PubMed  Google Scholar 

  40. Mielck F, Stephen H, Buhre W, et al. Effects of 1 MAC desflurane on cerebral metabolism, blood flow and carbon dioxide reactivity in humans. Br J Anaesth. 1998;81(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  41. Torri G. Inhalation anesthetics: a review. Minerva Anestesiol. 2010;76(3):215–28.

    CAS  PubMed  Google Scholar 

  42. Adams RW, Gronert GA, Smith TM, Michenfekder JD. Halothane, hypocapnia and cerebrospinal fluid pressure in neurosurgery. In: Brock M, Deitz, editors. Intracranial pressure. New York: Springer; 1972. p. 320–5.

    Chapter  Google Scholar 

  43. McKay RE, Sonner J, McKay WR. Inhaled anesthetics. In: Stoelting RK, Miller RD, editors. Basics in anesthesia. 5th ed. Phildelphia: Churchill Livingstone Elsevier; 2007. p. 77–96.

    Google Scholar 

  44. Hornbein TF, Eger EI 2nd, Winter PM, et al. The minimum alveolar concentration of nitrous oxide in man. Anesth Analg. 1982;61(7):553–6.

    Article  CAS  PubMed  Google Scholar 

  45. Eger EI. Isoflurane (Forane®): A compendium and reference. Madison, Wisconsin: Ohio Medical Products; 1981.

    Book  Google Scholar 

  46. Khan KS, Hayes I, Buggy DJ. Pharmacology of anaesthetic agents II: inhalation anaesthetic agents. Contin Educ Anaesth Crit Care Pain. 2014;14(3):106–11.

    Article  Google Scholar 

  47. Moore MA, Weiskopf RB, Eger EI 2nd, et al. Arrhythmogenic doses of epinephrine are similar during desflurane or isoflurane anesthesia in humans. Anesthesiology. 1993;79(5):943–7.

    Article  CAS  PubMed  Google Scholar 

  48. Navarro R, Weiskopf RB, Moore MA, et al. Humans anesthetized with sevoflurane or isoflurane have similar arrhythmic response to epinephrine. Anesthesiology. 1994;80(3):545–9.

    Article  CAS  PubMed  Google Scholar 

  49. Sakai EM, Connolly LA, Klauck JA. Inhalation anesthesiology and volatile liquid anesthetics: focus on isoflurane, desflurane, and sevoflurane. Pharmacotherapy. 2005;25(12):1773–88.

    Article  CAS  PubMed  Google Scholar 

  50. Doi M, Ikeda K. Respiratory effects of sevoflurane. Anesth Analg. 1987;66(3):241–4.

    Article  CAS  PubMed  Google Scholar 

  51. Lockhart SH, Rampil IJ, Yasuda N, et al. Depression of ventilation by desflurane in humans. Anesthesiology. 1991;74(3):484–8.

    Article  CAS  PubMed  Google Scholar 

  52. Lam AM, Clement JL, Chung DC, Knill RL. Respiratory effects of nitrous oxide during enflurane anesthesia in humans. Anesthesiology. 1982;56(4):298–303.

    Article  CAS  PubMed  Google Scholar 

  53. Goff MJ, Shahbaz R, Arain SR, et al. Absence of bronchodilation during desflurane anesthesia: a comparison to sevoflurane and thiopental. Anesthesiology. 2000;93(2):404–8.

    Article  CAS  PubMed  Google Scholar 

  54. Jones RM, Cashman JN, Mant TG. Clinical impressions and cardiorespiratory effects of a new fluorinated inhalation anaesthetic, desflurane (I–653), in volunteers. Br J Anaesth. 1990;64(1):11–5.

    Article  CAS  PubMed  Google Scholar 

  55. Kong CF, Chew ST, Ip-Yam PC. Intravenous opioids reduce airway irritation during induction of anaesthesia with desflurane in adults. Br J Anaesth. 2000;85(3):364–7.

    Article  CAS  PubMed  Google Scholar 

  56. Wilkes AR, Hall JE, Wright E, Grundler S. The effect of humidification and smoking habit on the incidence of adverse airway events during deepening of anaesthesia with desflurane. Anaesthesia. 2000;55(7):685–9.

    Article  CAS  PubMed  Google Scholar 

  57. Vitez TS, Miller RD, Eger EI 2nd, et al. Comparison in vitro of isoflurane and halothane potentiation of d- tubocurarine and succinylcholine meeting abstractss. Anesthesiology. 1974;41(1):53–6.

    Article  CAS  PubMed  Google Scholar 

  58. Hornbein TF, Eger EI 2nd, Winter PM, et al. The minimum alveolar concentration of nitrous oxide in man. Anesth Analg. 1982;61(7):553–6.

    Article  CAS  PubMed  Google Scholar 

  59. Papadimos TJ, Almasri M, Padgett JC, Rush JEA. suspected case of delayed onset malignant hyperthermia with desflurane anesthesia. Anesth Analg. 2004;98(2):548–9.

    Article  PubMed  Google Scholar 

  60. Ducart A, Adnet P, Renaud B, et al. Malignant hyperthermia during sevoflurane administration. Anesth Analg. 1995;80(3):609–11.

    CAS  PubMed  Google Scholar 

  61. Ochiai R, Toyoda Y, Takeda J, et al. Possible association of malignant hyperthermia with sevoflurane anesthesia. Anesth Analg. 1992;74(4):616–8.

    Article  CAS  PubMed  Google Scholar 

  62. Merkel G, Eger EI 2nd. A comparative study of halothane and halopropane anesthesia including method for determining equipotency. Anesthesiology. 1963:346–57.

    Google Scholar 

  63. Hoenemann CW, Halene-Holtgraeve TB, Booke M, et al. Delayed onset of malignant hyperthermia in desflurane anesthesia. Anesth Analg. 2003;96(1):165–7.

    PubMed  Google Scholar 

  64. Gillmeister I, Schummer C, Hommann M, Schummer W. Delayed onset of malignant hyperthermia crisis during a living donor liver transplantation caused by sevoflurane. Article in German. Anaesthesiol Intensivmed Notfallmed Schmerzther. 2004;39(3):153–6.

    Article  CAS  Google Scholar 

  65. Eger EI 2nd, Eisenkraft JB, Weiskopf. The pharmacology of inhaled anesthetics. San Francisco (CA). Not in PubMed. 2002

    Google Scholar 

  66. Whelan E, Wood AJ, Koshakji R, et al. Halothane inhibition of propranolol metabolism is stereoselective. Anesthesiology. 1989;71(4):561–4.

    Article  CAS  PubMed  Google Scholar 

  67. Reilly CS, Wood AJ, Koshakji R, Wood M. The effect of halothane on drug disposition: contribution of changes in intrinsic drug metabolizing capacity and hepatic blood flow. Anesthesiology. 1985;63(1):70–6.

    Article  CAS  PubMed  Google Scholar 

  68. Eger EI 2nd, Lasiter MJ, Winegar R, et al. Compound A induces sister chromatid exchanges in Chinese hamster ovary cells. Anesthesiology. 1997;86(4):918–22.

    Article  CAS  PubMed  Google Scholar 

  69. Flippo TS, Holder WD Jr. Neurologic degeneration associated with nitrous oxide anesthesia in patients with vitamin B12 deficiency. Arch Surg. 1993;128(12):1391–5.

    Article  CAS  PubMed  Google Scholar 

  70. Stevenson G, Hall SC, Rudnick S, et al. The effect of anesthetic agents on the human immune response. Anesthesiology. 1990;72(3):542–52.

    Article  CAS  PubMed  Google Scholar 

  71. Stollings LM, Jia LJ, Tang P, et al. Immune modulation by volatile anesthetics. Anesthesiology. 2016;125(2):399–411.

    Article  CAS  PubMed  Google Scholar 

  72. Yasuda N, Lockhart S, Eger EI 2nd, et al. Kinetics of desflurane, isoflurane, and halothane in humans. Anesthesiology. 1991;74(3):489–98.

    Article  CAS  PubMed  Google Scholar 

  73. Yasuda N, Lockhart S, Eger EI 2nd, et al. Comparison of kinetic of sevoflurane and isoflurane in humans. Anesth Analg. 1991;72(3):316–24.

    Article  CAS  PubMed  Google Scholar 

  74. Krishna DR, Klotz U. Extraheptatic metabolism of drugs in humans. Clin Pharmacokinet. 1994;26(2):144–60.

    Article  CAS  PubMed  Google Scholar 

  75. Eiger EI 2nd. Partition coefficients of I-653 in human blood, saline, and olive oil. Anesth Analg. 1987;66(10):971–3.

    Google Scholar 

  76. Spracklin DK, Thummel KE, Kharasch ED. Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A 4. Drug Metab Dispos. 1996;24(9):976–83.

    CAS  PubMed  Google Scholar 

  77. Summary of the national halothane study: possible association between halothane anesthesia and postoperative hepatic necrosis. JAMA. 1966;197(10):775–88.

    Google Scholar 

  78. Gut J, Christen U, Huwyler J. Mechanisms of halothane toxicity: novel insights. Pharmacol Ther. 1993;58(2):133–55.

    Article  CAS  PubMed  Google Scholar 

  79. Ray DC, Drummond GB. Halothane hepatitis. Br J Anesth. 1991;67(1):84–99.

    Article  CAS  Google Scholar 

  80. Kenna JG. Immunoallergic drug-induced hepatitis: lessons from halothane. J Hepatol. 1997;26(Suppl 1):5–12.

    Article  CAS  PubMed  Google Scholar 

  81. Yoshimura N, Holaday DA, Fiserova-Bergerova V. Metabolism of methoxyflurane in man. Anesthesiology. 1976;44(5):372–9.

    Article  CAS  PubMed  Google Scholar 

  82. Vandam LD. Report on methoxyflurane. Anesthesiology. 1966;27(5):534–5.

    Article  CAS  PubMed  Google Scholar 

  83. Crandell WB, Pappas SG, MacDonald A. Nephrotoxicity associated with methoxyflurane anesthesia. Anesthesiology. 1966;27(5):591–607.

    Article  CAS  PubMed  Google Scholar 

  84. Cousins MJ, Mazze RI. Methoxyflurane nephrotoxicity: a study of dose response in man. JAMA. 1973;225(13):1611–6.

    Article  CAS  PubMed  Google Scholar 

  85. Mazze RI. Methoxyflurane revisited: tale of an anesthetic from cradle to grave. Anesthesiology. 2006;105(4):843–6.

    Article  CAS  PubMed  Google Scholar 

  86. Kharasch ED, Thummel KE. Identification of cytochrome P450 2E1 as the predominant enzyme catalysing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane. Anesthesiology. 1993;79(4):795–807.

    Article  CAS  PubMed  Google Scholar 

  87. Koblin DD. Characteristics and implications of desflurane metabolism and toxicity. Anesth Analg. 1992;75(4 Suppl):S10–6.

    CAS  PubMed  Google Scholar 

  88. Baxter PJ, Garton K, Kharasch ED. Mechanistic aspects of carbon monoxide formation from volatile anesthetics. Anesthesiology. 1998;89(4):929–41.

    Article  CAS  PubMed  Google Scholar 

  89. Wissing H, Kuhn I, Warnken U, Dudziak R. Carbon monoxide production from desflurane, enflurane, halothane, isoflurane, and sevoflurance with dry soda lime. Anesthesiology. 2001;95(5):1205–12.

    Article  CAS  PubMed  Google Scholar 

  90. Kharasch ED. Biotransformation of sevoflurane. Anesth Analg. 1995;81(6 Suppl):S27–38.

    Article  CAS  PubMed  Google Scholar 

  91. Anders MW. Formation and toxicity of anesthetic degradation products. Annu Rev Pharmacol Toxicol. 2005;45:147–76.

    Article  CAS  PubMed  Google Scholar 

  92. Iyer RA, Anders MW. Cysteine conjugate beta-lyase-dependent biotransformation of the cysteine Sconjugates of the sevoflurane degradation product compound A in humans, nonhuman primate, and rat kidney cytosol and mitochondria. Anesesthesiology. 1996;85(6):1454–61.

    Article  CAS  Google Scholar 

  93. Kharasch ED. Sevoflurane and the kidney: a current perspective. Anesth Clin North Am Annu Anesthetic Pharmacol. 1996;1:205–22.

    Google Scholar 

  94. Kharasch ED, Schroeder JI, Sheffels P, Liggitt HD. Influence of sevoflurane on the metabolism and renal effects of compound A in rats. Anesthesiology. 2005;103(6):1183–8.

    Article  CAS  PubMed  Google Scholar 

  95. Rappaport B, Mellon RD, Simone A, Woodcock J. Defining safe use of anesthesia in children. N Engl J Med. 2011;364(15):1387–90.

    Article  CAS  PubMed  Google Scholar 

  96. Hudson AE, Hemmings HC Jr. Are anaesthetics toxic to the brain? Br J Anaesth. 2011;107(1):30–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23(3):876–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Loepke AW, Soriano SG. An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function. Anesth Analg. 2008;106(6):1681–707.

    Article  PubMed  Google Scholar 

  99. Zou X, Liu F, Zhang X, et al. Inhalation anesthetic-induced neuronal damage in the developing rhesus monkey. Neurotoxicol Teratol. 2011;33(5):592–7.

    Article  CAS  PubMed  Google Scholar 

  100. Wilder RT, Flick RP, Sprung J, et al. Early exposure to anesthesia and learning disabilities in a populationbased cohort. Anesthesiology. 2009;110(4):796–804.

    Article  PubMed  Google Scholar 

  101. Hansen TG, Pedersen JK, Henneberg SW, et al. Academic performance in adolescence after inguinal hernia repair in infancy: a nationwide cohort study. Anesthesiology. 2011;114(5):1076–85.

    Article  PubMed  Google Scholar 

  102. Sun LS, Li G, DiMaggio CJ, et al. Feasibility and pilot study of the Pediatric Anesthesia NeuroDevelopment Assessment (PANDA) project. J Neurosurg Anesthesiol. 2012;24(4):382–8.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Eger EI 2nd. Age, minimum alveolar anesthetic concentration, and minimum alveolar anesthetic concentration-awake. Anesth Analg. 2001;93(4):947–53.

    Article  CAS  PubMed  Google Scholar 

  104. Hall RI, Sullivan JA. Does cardiopulmonary bypass alter enflurane requirements for anesthesia? Anesthesiology. 1990;73(2):249–55.

    Article  CAS  PubMed  Google Scholar 

  105. Al Q, Eger EI 2nd, Tinker JH. Determination and applications of MAC. Anesthesiology. 1980;53(4):315–34.

    Article  Google Scholar 

  106. Vieira E, Cleaton-Jones P, Auston JC, et al. Effects of low concentrations of nitrous oxide on rat fetuses. Anesth Analg. 1980;59(3):175–7.

    Article  CAS  PubMed  Google Scholar 

  107. Fink B, Shepard T, Blandau R. Teratogenic activity of nitrous oxide. Nature. 1967;214(5084):146–8.

    Article  CAS  PubMed  Google Scholar 

  108. Rowland AS, Baird DD, Weinberg CR, et al. Reduced fertility among women employed as dental assistants exposed to high levels of nitrous oxide. N Engl J Med. 1992;327(14):993–7.

    Article  CAS  PubMed  Google Scholar 

  109. Rowland AS, Baird DD, Shore DL, et al. Nitrous oxide and spontaneous abortion in female dental assistants. Am J Epidemiol. 1995;141(6):531–8.

    Article  CAS  PubMed  Google Scholar 

  110. Basford AB, Fink BR. The teratogenicity of halothane in the rat. Anesthesiology. 1968;29(6):1167–73.

    Article  CAS  PubMed  Google Scholar 

  111. Wharton RS, Wilson AI, Mazze RI, et al. Fetal morphology in mice exposed to halothane. Anesthesiology. 1979;51(6):532–7.

    Article  CAS  PubMed  Google Scholar 

  112. Corbett TH, Cornell RG, Endres JL, Lieding K. Birth defects among children of nurse-anesthetists. Anesthesiology. 1974;41(4):341–4.

    Article  CAS  PubMed  Google Scholar 

  113. Occupational disease among operating room personnel: a national study. Report of an Ad Hoc Committee on the Effect of Trace Anesthetics on the Health of Operating Room Personnel, American Society of Anesthesiologists. Anesthesiology. 1974;41(4):321–40.

    Google Scholar 

  114. Pharoah PO, Aberman E, Doyle P, Chamberlain G. Outcome of pregnancy among women in anaesthetic practice. Lancet. 1977;309(8001):34–6.

    Article  Google Scholar 

  115. Strum DP, Eger EI 2nd, Unadkat JD, et al. Age affects the pharmacokinetics of inhaled anesthetics in humans. Anesth Analg. 1991;73(3):310–8.

    Article  CAS  PubMed  Google Scholar 

  116. Miller RD, Pardo MC Jr, editors. Basics of anesthesia. 8th ed. Philadelphia: Saunders; 2015.

    Google Scholar 

  117. Eger EI 2nd. The effect of inspired concentration on the rate of rise of alveolar concentration. Anesthesiology. 1963;24:153–7.

    Article  Google Scholar 

  118. Eger EI 2nd. Desflurane (Suprane): A compendium and reference. Anaquest: Nutley, NJ; 1993.

    Google Scholar 

  119. Stoelting RK, Eger EI 2nd. An additional explanation for the second gas effect: a concentrating effect. Anesthesiology. 1969;30(3):273–7.

    Article  CAS  PubMed  Google Scholar 

  120. Epstein RM, Rackow H, Salanitre E, Wolf GL. Influence of the concentration effect on the uptake of anesthetic mixtures: the second gas effect. Anesthesiology. 1964;25:364–71.

    Article  CAS  PubMed  Google Scholar 

  121. Carpenter RI, Eger EI 2nd, Johnson BH, et al. Pharmacokinetics of inhaled anesthetics in humans: measurements during and after the simultaneous administration of enflurane, halothane, isoflurane, methoxyflurane, and nitrous oxide. Anesth Analg. 1986;65(6):575–82.

    Article  CAS  PubMed  Google Scholar 

  122. Fink BR. Diffusion anoxia. Anesthesiology. 1955;16(4):511–9.

    Article  CAS  PubMed  Google Scholar 

Selected Readings

  • Stachnik J. Inhaled anesthetic agents. Am J Health Syst Pharm. 2006;63(7):623–34.

    Google Scholar 

  • Eger EI 2nd. Characteristics of anesthetic agents used for induction and maintenance of general anesthesia. Am J Health Syst Pharm. 2004;61(Suppl 4):S3–10.

    Google Scholar 

  • Eger EI 2nd. The pharmacology of inhaled anesthetics. J Crit Care. 2005;24(2):89–100.

    Google Scholar 

  • Sonner JM, Antognini JF, Dutton RC, et al. Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration. Anesth Analg. 2003;97(3):718–40.

    Google Scholar 

  • Campagna JA, Miller KW, Forman SA. Mechanisms of actions of inhaled anesthetics. N Engl J Med. 2003;348(21):2110–24.

    Google Scholar 

  • Torri G. Inhalation anesthetics: a review. Minerva Anestesiol. 2010;76(3):215–28.

    Google Scholar 

  • McKay RE, Sonner J, McKay WR. Inhaled anesthetics. In: Stoelting RK, Miller RD, editors. Basics in anesthesia. 5th ed. Phildelphia: Churchill Livingstone Elsevier; 2007. p. 77–96.

    Google Scholar 

  • Khan KS, Hayes I, Buggy DJ. Pharmacology of anaesthetic agents II: inhalation anaesthetic agents. Contin Educ Anaesth Crit Care Pain. 2014;14(3):106–11.

    Google Scholar 

  • Rappaport B, Mellon RD, Simone A, Woodcock J. Defining safe use of anesthesia in children. N Engl J Med. 2011;364(15):1387–90.

    Google Scholar 

  • Ebert TJ. Inhalation anesthesia. In: Barash PG, Cullen BF, Stoelting RK, editors. Clinical anesthesia. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  • Miller RD, Pardo MC Jr, editors. Basics of anesthesia. 8th ed. Philadelphia: Saunders; 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Demers Lavelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Demers Lavelle, E., Kurra, S. (2018). Pharmacology of Inhaled Anesthetics. In: Farag, E., Argalious, M., Tetzlaff, J.E., Sharma, D. (eds) Basic Sciences in Anesthesia. Springer, Cham. https://doi.org/10.1007/978-3-319-62067-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62067-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62065-7

  • Online ISBN: 978-3-319-62067-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics