Skip to main content

Modelling Approach to Enzymatic pH Oscillators in Giant Lipid Vesicles

  • Chapter
  • First Online:
Advances in Bionanomaterials

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

Abstract

The urease-catalyzed hydrolysis of urea can display feedback driven by base production (NH3) resulting in a switch from acidic to basic pH under non-buffered conditions. Thus, this enzymatic reaction is a good candidate for investigation of chemical oscillations or bistability. In order to determine the best conditions for oscillations, a two-variable model was initially derived in which acid and urea were supplied at rates k H and k S from an external medium to an enzyme-containing compartment. Oscillations were theoretically observed providing the necessary condition that k H > k S was met. To apply this model, we devised an experimental system able to ensure the fast transport of acid compared to that of urea. In particular, by means of the droplet transfer method, we encapsulated the enzyme, together with a proper pH probe, in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) based liposomes, where differential diffusion of H+ and urea is ensured by the different permeability (P m) of the membrane to the two species. Here we present an improved theoretical model that accounts for the products transport and for the probe hydrolysis, to obtain a better guidance for the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicolis, G., Prigogine, I.: Self-organization in nonequilibrium systems. Wiley, New York (1977)

    MATH  Google Scholar 

  2. Orban, M., Kurin-Csorgei, K., Epstein, I.R.: pH-Regulated chemical oscillators. Acc. Chem. Res. 48(3), 593–601 (2015)

    Article  Google Scholar 

  3. Takeoka, Y., Watanabe, M., Yoshida, R.: Self-sustaining peristaltic motion on the surface of a porous gel. J. Am. Chem. Soc. 125(44) (2003) 13320–13321 pH Oscillators in GVs 11

    Google Scholar 

  4. Paul, A.: Observations of the effect of anionic, cationic, neutral, and zwitterionic surfactants on the Belousov-Zhabotinsky reaction. J. Phys.Chem. B 109(19), 9639–9644 (2005)

    Article  Google Scholar 

  5. Rossi, F., Varsalona, R., Liveri, M.L.T.: New features in the dynamics of a ferroincatalyzed Belousov-Zhabotinsky reaction induced by a zwitterionic surfactant. Chem. Phys. Lett. 463(4–6), 378–382 (2008)

    Article  Google Scholar 

  6. Jahan, R.A., Suzuki, K., Mahara, H., Nishimura, S., Iwatsubo, T., Kaminaga, A., Yamamoto, Y., Yamaguchi, T.: Perturbation mechanism and phase transition of AOT aggregates in the Fe(II)[batho(SO3)2]3—catalyzed aqueous Belousov-Zhabotinsky reaction. Chem. Phys. Lett. 485(4–6), 304–308 (2010)

    Article  Google Scholar 

  7. Rossi, F., Liveri, M.L.T.: Chemical self-organization in self-assembling biomimetic systems. Ecol. Model. 220(16), 1857–1864 (2009)

    Article  Google Scholar 

  8. Sciascia, L., Rossi, F., Sbriziolo, C., Liveri, M.L.T., Varsalona, R.: Oscillatory dynamics of the Belousov-Zhabotinsky system in the presence of a self-assembling nonionic polymer. Role of the reactants concentration. Phys. Chem. Chem. Phys. 12(37), 11674–11682 (2010)

    Article  Google Scholar 

  9. Rossi, F., Varsalona, R., Marchettini, N., Turco Liveri, M.L.: Control of spontaneous spiral formation in a zwitterionic micellar medium. Soft Matter 7, 9498 (2011)

    Article  Google Scholar 

  10. Vanag, V.K., Epstein, I.R.: Pattern formation in a tunable medium: The Belousov-Zhabotinsky reaction in an aerosol OT microemulsion. Phys. Rev. Lett. 87(22), 228301–4 (2001)

    Google Scholar 

  11. Toiya, M., Vanag, V.K., Epstein, I.R.: Diffusively coupled chemical oscillators in a microfluidic assembly. Angew. Chem. Int. Ed. 47(40), 7753–7755 (2008)

    Article  Google Scholar 

  12. Rossi, F., Vanag, V.K., Epstein, I.R.: Pentanary cross-diffusion in water-in—oil microemulsions loaded with two components of the Belousov-Zhabotinsky reaction. Chem. Eur. J. 17(7), 2138–2145 (2011)

    Article  Google Scholar 

  13. Tompkins, N., Li, N., Girabawe, C., Heymann, M., Ermentrout, G.B., Epstein, I.R., Fraden, S.: Testing turing’s theory of morphogenesis in chemical cells. Proc. Natl. Acad. Sci. 111(12), 4397–4402 (2014)

    Article  Google Scholar 

  14. Walde, P., Umakoshi, H., Stano, P., Mavelli, F.: Emergent properties arising from the assembly of amphiphiles. Artificial vesicle membranes as reaction promoters and regulators. Chem. Commun. 50(71), 10177–10197 (2014)

    Article  Google Scholar 

  15. Tomasi, R., Noel, J.M., Zenati, A., Ristori, S., Rossi, F., Cabuil, V., Kanoufi, F., Abou-Hassan, A.: Chemical communication between liposomes encapsulating a chemical oscillatory reaction. Chem. Sci. 5(5), 1854–1859 (2014)

    Article  Google Scholar 

  16. Rossi, F., Zenati, A., Ristori, S., Noel, J.M., Cabuil, V., Kanoufi, F., Abou-Hassan, A.: Activatory coupling among oscillating droplets produced in microfluidic based devices. Int. J. Unconventional Comput. 11(1), 23–36 (2015)

    Google Scholar 

  17. Torbensen, K., Rossi, F., Pantani, O.L., Ristori, S., Abou-Hassan, A.: Interaction of the Belousov-Zhabotinsky reaction with phospholipid engineered membranes. J. Phys. Chem. B 119(32), 10224–10230 (2015)

    Article  Google Scholar 

  18. Stockmann, T.J., Noël, J.M., Ristori, S., Combellas, C., Abou-Hassan, A., Rossi, F., Kanoufi, F.: Scanning electrochemical microscopy of Belousov-Zhabotinsky reaction: how confined oscillations reveal short lived radicals and auto-catalytic species. Anal. Chem. 87(19), 9621–9630 (2015)

    Article  Google Scholar 

  19. Taylor, A.F., Tinsley, M.R.,Wang, F., Huang, Z., Showalter, K.: Dynamical quorum sensing and synchronization in large populations of chemical oscillators. Science 323(5914), 614–617 (2009)

    Google Scholar 

  20. Rossi, F., Ristori, S., Marchettini, N., Pantani, O.L.: Functionalized clay microparticles as catalysts for chemical oscillators. J. Phys. Chem. C 118(42), 24389–24396 (2014)

    Article  Google Scholar 

  21. Hu, G., Pojman, J.A., Scott, S.K., Wrobel, M.M., Taylor, A.F.: Base-catalyzed feedback in the urea-urease reaction. J. Phys. Chem. B 114(44), 14059–14063 (2010)

    Article  Google Scholar 

  22. Wrobel, M.M., Bánsági, T., Scott, S.K., Taylor, A.F., Bounds, C.O., Carranza, A., Pojman, J.A.: pH wave-front propagation in the urea-urease reaction. Biophys. J. 103(3), 610–615 (2012)

    Article  Google Scholar 

  23. Miele, Y., Bánsági, T., Taylor, A.F., Stano, P., Rossi, F.: Engineering enzyme-driven dynamic behaviour in lipid vesicles. In Rossi, F., Mavelli, F., Stano, P., Caivano, D. (eds.): Advances in artificial life, evolutionary computation and systems chemistry. Number 587 in communications in computer and information science, pp. 197–208. Springer International Publishing (2015)

    Google Scholar 

  24. Stingl, K., Altendorf, K., Bakker, E.P.: Acid survival of Helicobacter pylori: how does urease activity trigger cytoplasmic pH homeostasis? Trends Microbiol. 10(2), 70–74 (2002)

    Article  Google Scholar 

  25. Muzika, F., Bansagi, T., Schreiber, I., SchreiberovAą, L., Taylor, A.F.: A bistable switch in pH in urease-loaded alginate beads. Chem. Commun. (Cambridge, England) 50(76), 11107–11109 (2014)

    Google Scholar 

  26. Lasic, D.D., Barenholz, Y.: Handbook of nonmedical applications of liposomes: theory and basic sciences, vol. 1. CRC Press (1996)

    Google Scholar 

  27. Paula, S., Volkov, A., Van Hoek, A., Haines, T., Deamer, D.W.: Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys. J 70(1), 339 (1996)

    Article  Google Scholar 

  28. Pautot, S., Frisken, B.J., Weitz, D.A.: Production of unilamellar vesicles using an inverted emulsion. Langmuir 19(7), 2870–2879 (2003)

    Article  Google Scholar 

  29. Carrara, P., Stano, P., Luisi, P.L.: Giant vesicles colonies: a model for primitive cell communities. ChemBioChem 13(10), 1497–1502 (2012)

    Article  Google Scholar 

  30. Stano, P., Wodlei, F., Carrara, P., Ristori, S., Marchettini, N., Rossi, F.: Approaches to molecular communication between synthetic compartments based on encapsulated chemical oscillators. In Pizzuti, C., Spezzano, G., (eds.): Advances in Artificial Life and Evolutionary Computation. Number 445 in Communications in Computer and Information Science, pp. 58–74. Springer International Publishing (2014)

    Google Scholar 

  31. Ermentrout, B.: Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students, vol. 14. Siam (2002)

    Google Scholar 

  32. Mathai, J.C., Sprott, G.D., Zeidel, M.L.: molecular mechanisms of water and solute transport across archaebacterial lipid membranes. J. Biol. Chem. 276(29), 27266–27271 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

Y.M. and F.R. were supported by the grants ORSA158121 and ORSA167988 funded by the University of Salerno (FARB ex 60%). The authors acknowledge the support through the COST Action CM1304 (Emergence and Evolution of Complex Chemical Systems).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Miele, Y., Bánsági, T., Taylor, A.F., Rossi, F. (2018). Modelling Approach to Enzymatic pH Oscillators in Giant Lipid Vesicles. In: Piotto, S., Rossi, F., Concilio, S., Reverchon, E., Cattaneo, G. (eds) Advances in Bionanomaterials. Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-62027-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62027-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62026-8

  • Online ISBN: 978-3-319-62027-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics