Skip to main content

Supercritical Antisolvent Process: PVP/Nimesulide Coprecipitates

  • Chapter
  • First Online:
Advances in Bionanomaterials

Abstract

Nimesulide (NIM) is an anti-inflammatory drug, widely used in the treatment of acute pain associated with different diseases. A major limitation in its usage is due to its reduced solubility in water; therefore, large doses are required to reach the therapeutic level, with consequent undesired effects on patient’s health. In order to improve NIM dissolution rate, a possible solution is represented by its micronization. Traditional micronization techniques show several drawbacks: lack of control over the particle morphology and particle size distribution, large solvent residues and use of high temperatures. An alternative to conventional techniques is represented by supercritical carbon dioxide (scCO2) based processes. In particular, nanoparticles and microparticles of different kind of materials were successfully obtained by supercritical antisolvent (SAS) precipitation. However, when processed using SAS, nimesulide precipitated in form of large crystals or it is completely extracted by the mixture solvent/antisolvent. A solution to this problem can be the production of drug-polymer composite microspheres, using a water soluble polymer in which the drug is entrapped. In this work, NIM coprecipitation with polyvinylpyrrolidone (PVP) is proposed on pilot scale. The effects of polymer/drug ratio, concentration, pressure and temperature were investigated to identify successful operating conditions for SAS coprecipitation. Microparticles with a mean diameter ranging between 1.6 and 4.1 µm were successfully produced. Drug release analyses revealed that NIM dissolution rate from PVP/NIM microparticles was 2.5 times faster with respect to unprocessed drug. The possible precipitation mechanisms involved in the process were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pouchain, E.C., Costa, F.W.G., Bezerra, T.P., Soares, E.C.S.: Comparative efficacy of nimesulide and ketoprofen on inflammatory events in third molar surgery: a split-mouth, prospective, randomized, double-blind study. International Journal of Oral and Maxillofacial Surgery 44(7), 876–884 (2015). doi:10.1016/j.ijom.2014.10.026

  2. Dashora, K., Saraf, S., Saraf, S.: Effect of processing variables and in-vitro study of microparticulate system of nimesulide. Revista Brasileira de Ciências Farmacêuticas 43, 555–562 (2007)

    Article  Google Scholar 

  3. Saffari, M., Ebrahimi, A., Langrish, T.: A novel formulation for solubility and content uniformity enhancement of poorly water-soluble drugs using highly-porous mannitol. Eur J Pharm Sci 83, 52–61 (2016). doi:10.1016/j.ejps.2015.12.016

  4. Wang, W., Liu, G., Wu, J., Jiang, Y.: Co-precipitation of 10-hydroxycamptothecin and poly (l-lactic acid) by supercritical CO2 anti-solvent process using dichloromethane/ethanol co-solvent. The Journal of Supercritical Fluids 74, 137–144 (2013). doi:10.1016/j.supflu.2012.11.022

  5. Couto, R., Alvarez, V., Temelli, F.: Encapsulation of Vitamin B2 in solid lipid nanoparticles using supercritical CO2. J. Supercrit. Fluids 120, Part 2, 432–442 (2017). doi:10.1016/j.supflu.2016.05.036

  6. Prosapio, V., Reverchon, E., De Marco, I.: Antisolvent micronization of BSA using supercritical mixtures carbon dioxide + organic solvent. J. Supercrit. Fluids 94, 189–197 (2014)

    Article  Google Scholar 

  7. Reverchon, E., Adami, R., De Marco, I., Laudani, C.G., Spada, A.: Pigment Red 60 micronization using supercritical fluids based techniques. J. Supercrit. Fluids 35(1), 76–82 (2005)

    Article  Google Scholar 

  8. Campardelli, R., Trucillo, P., Reverchon, E.: A supercritical fluid-based process for the production of fluorescein-loaded liposomes. Ind. Eng. Chem. Res. 55(18), 5359–5365 (2016). doi:10.1021/acs.iecr.5b04885

    Article  Google Scholar 

  9. Hossain, M.S., Norulaini, N.A.N., Naim, A.Y.A., Zulkhairi, A.R.M., Bennama, M.M., Omar, A.K.M.: Utilization of the supercritical carbon dioxide extraction technology for the production of deoiled palm kernel cake. J. CO2 Util. 16, 121–129 (2016). doi:10.1016/j.jcou.2016.06.010

  10. Smirnova, I., Mamic, J., Arlt, W.: Adsorption of drugs on silica aerogels. Langmuir 19(20), 8521–8525 (2003)

    Article  Google Scholar 

  11. Baldino, L., Concilio, S., Cardea, S., De Marco, I., Reverchon, E.: Complete glutaraldehyde elimination during chitosan hydrogel drying by SC-CO2 processing. J. Supercrit. Fluids 103, 70–76 (2015). doi:10.1016/j.supflu.2015.04.020

    Article  Google Scholar 

  12. Baldino, L., Concilio, S., Cardea, S., Reverchon, E.: Interpenetration of natural polymer aerogels by supercritical drying. Polymers 8(4), 106 (2016). doi:10.3390/polym8040106

    Article  Google Scholar 

  13. Badens, E., Majerik, V., Horváth, G., Szokonya, L., Bosc, N., Teillaud, E., Charbit, G.: Comparison of solid dispersions produced by supercritical antisolvent and spray-freezing technologies. Int. J. Pharm. 377(1), 25–34 (2009)

    Article  Google Scholar 

  14. De Marco, I., Reverchon, E.: Supercritical carbon dioxide + ethanol mixtures for the antisolvent micronization of hydrosoluble materials. Chem. Eng. J. 187, 401–409 (2012). doi: 10.1016/j.cej.2012.01.135

  15. Rueda, M., Sanz-Moral, L.M., Segovia, J.J., Martín, Á.: Enhancement of hydrogen release kinetics from ethane 1,2 diamineborane (EDAB) by micronization using Supercritical Antisolvent (SAS) precipitation. Chem. Eng. J. 306, 164–173 (2016). doi:10.1016/j.cej.2016.07.052

    Article  Google Scholar 

  16. Moneghini, M., Perissutti, B., Vecchione, F., Kikic, I., Alessi, P., Cortesi, A., Princivalle, F.: Supercritical antisolvent precipitation of nimesulide: preliminary experiments. Curr. Drug Deliv. 4(3), 241–248 (2007). doi:10.2174/156720107781023901

  17. Montes, A., Gordillo, M.D., Pereyra, C., Martínez de la Ossa, E.J.: Co-precipitation of amoxicillin and ethyl cellulose microparticles by supercritical antisolvent process. J. Supercrit. Fluids 60, 75–80 (2011). doi:10.1016/j.supflu.2011.05.002

  18. Kurniawansyah, F., Mammucari, R., Foster, N.R.: Inhalable curcumin formulations by supercritical technology. Powder Technol. 284, 289–298 (2015). doi:10.1016/j.powtec.2015.04.083

    Article  Google Scholar 

  19. Jin, H.Y., Xia, F., Zhao, Y.P.: Preparation of hydroxypropyl methyl cellulose phthalate nanoparticles with mixed solvent using supercritical antisolvent process and its application in co-precipitation of insulin. Adv. Pow. Tech. 23(2), 157–163 (2012). doi:10.1016/j.apt.2011.01.007

  20. Franceschi, E., De Cezaro, A., Ferreira, S.R.S., Kunita, M.H., Muniz, E.C., Rubira, A.F., Oliveira, J.V.: Co-precipitation of beta-carotene and bio-polymer using supercritical carbon dioxide as antisolvent. Open Chem. Eng. J. 5(1), 11–20 (2011)

    Article  Google Scholar 

  21. Prosapio, V., Reverchon, E., De Marco, I.: Incorporation of liposoluble vitamins within PVP microparticles using supercritical antisolvent precipitation. J. CO2 Util. 19, 230–237 (2017)

    Google Scholar 

  22. Prosapio, V., Reverchon, E., De Marco, I.: Coprecipitation of Polyvinylpyrrolidone/β-Carotene by supercritical antisolvent processing. Ind. Eng. Chem. Res. 54(46), 11568–11575 (2015). doi:10.1021/acs.iecr.5b03504

    Article  Google Scholar 

  23. Prosapio, V., De Marco, I., Reverchon, E.: PVP/corticosteroid microspheres produced by supercritical antisolvent coprecipitation. Chem. Eng. J. 292, 264–275 (2016). doi:10.1016/j.cej.2016.02.041

  24. Ledet, G.A., Graves, R.A., Glotser, E.Y., Mandal, T.K., Bostanian, L.A.: Preparation and in vitro evaluation of hydrophilic fenretinide nanoparticles. Int. J. Pharm. 479(2), 329–337 (2015). doi:10.1016/j.ijpharm.2014.12.052

  25. Prosapio, V., Reverchon, E., De Marco, I.: Formation of PVP/nimesulide microspheres by supercritical antisolvent coprecipitation. J. Supercrit. Fluids 118, 19–26 (2016)

    Article  Google Scholar 

  26. Andreatta, A.E., Florusse, L.J., Bottini, S.B., Peters, C.J.: Phase equilibria of dimethyl sulfoxide (DMSO) + carbon dioxide, and DMSO + carbon dioxide + water mixtures. J. Supercrit. Fluids 42(1), 60–68 (2007). doi:10.1016/j.supflu.2006.12.015

  27. De Marco, I., Rossmann, M., Prosapio, V., Reverchon, E., Braeuer, A.: Control of particle size, at micrometric and nanometric range, using supercritical antisolvent precipitation from solvent mixtures: application to PVP. Chem. Eng. J. 273, 344–352 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iolanda De Marco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

De Marco, I., Prosapio, V., Reverchon, E. (2018). Supercritical Antisolvent Process: PVP/Nimesulide Coprecipitates. In: Piotto, S., Rossi, F., Concilio, S., Reverchon, E., Cattaneo, G. (eds) Advances in Bionanomaterials. Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-62027-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62027-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62026-8

  • Online ISBN: 978-3-319-62027-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics