Skip to main content

Differentially Private Data Analysis

  • Chapter
  • First Online:
Differential Privacy and Applications

Part of the book series: Advances in Information Security ((ADIS,volume 69))

  • 2777 Accesses

Abstract

The essential task of differentially private data analysis is extending the current non-private algorithms to differentially private algorithms. This extension can be realized by several frameworks, roughly categorized into Laplace/exponential frameworks and private learning frameworks. The Laplace/exponential framework incorporates Laplace or exponential mechanisms into non-private analysis algorithms directly. For example, adding Laplace noise to the count steps in the algorithm or by employing exponential mechanisms when making selections. Private learning frameworks consider data analysis as learning problems in terms of optimization. Learning problems are solved by defining a series of objective functions. Compared with the Laplace/exponential framework, a private learning framework has a clear target, and the results produced by this framework are easier to compare in terms of risk bound or sample complexity. But private learning frameworks can only deal with limited learning algorithms, while nearly all types of analysis algorithms can be implemented in a Laplace/exponential framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep learning with differential privacy. In CCS, pages 308–318, 2016.

    Google Scholar 

  2. R. Bassily, A. D. Smith, and A. Thakurta. Private empirical risk minimization: Efficient algorithms and tight error bounds. In FOCS, pages 464–473, 2014.

    Google Scholar 

  3. A. Beimel, S. P. Kasiviswanathan, and K. Nissim. Bounds on the sample complexity for private learning and private data release. In TCC, pages 437–454. 2010.

    Google Scholar 

  4. A. Beimel, K. Nissim, and U. Stemmer. Characterizing the sample complexity of private learners. In ITCS, pages 97–110, 2013.

    Google Scholar 

  5. A. Beimel, K. Nissim, and U. Stemmer. Private learning and sanitization: Pure vs. approximate differential privacy. CoRR, abs/1407.2674, 2014.

    Google Scholar 

  6. A. Beimel, K. Nissim, and U. Stemmer. Learning privately with labeled and unlabeled examples. In SODA, pages 461–477, 2015.

    Google Scholar 

  7. R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta. Discovering frequent patterns in sensitive data. In SIGKDD, pages 503–512, 2010.

    Google Scholar 

  8. A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: the SuLQ framework. In PODS, pages 128–138, 2005.

    Google Scholar 

  9. A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive database privacy. In STOC, pages 609–618, 2008.

    Google Scholar 

  10. K. Chaudhuri and D. Hsu. Sample complexity bounds for differentially private learning. In COLT, pages 155–186, 2011.

    Google Scholar 

  11. K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic regression. In NIPS 2014, pages 289–296, 2008.

    Google Scholar 

  12. K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. Differentially private empirical risk minimization. Journal of Machine Learning Research, 12(2):1069–1109, 2011.

    MathSciNet  MATH  Google Scholar 

  13. C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential privacy under continual observation. In STOC, pages 715–724, 2010.

    Google Scholar 

  14. D. Feldman, A. Fiat, H. Kaplan, and K. Nissim. Private coresets. In STOC, pages 361–370, 2009.

    Google Scholar 

  15. A. Friedman and A. Schuster. Data mining with differential privacy. In SIGKDD, pages 493–502, 2010.

    Google Scholar 

  16. R. Hall, A. Rinaldo, and L. Wasserman. Differential privacy for functions and functional data. J. Mach. Learn. Res., 14(1):703–727, 2013.

    MathSciNet  MATH  Google Scholar 

  17. G. Jagannathan, K. Pillaipakkamnatt, and R. N. Wright. A practical differentially private random decision tree classifier. Transactions on Data Privacy, 5(1):273–295, 2012.

    MathSciNet  Google Scholar 

  18. P. Jain and A. Thakurta. Differentially private learning with kernels. In ICML, pages 118–126, 2013.

    Google Scholar 

  19. P. Jain and A. G. Thakurta. (near) dimension independent risk bounds for differentially private learning. In ICML, pages 476–484, 2014.

    Google Scholar 

  20. H. Jiawei and M. Kamber. Data mining: concepts and techniques. San Francisco, CA, itd: Morgan Kaufmann, 5, 2001.

    Google Scholar 

  21. S. P. Kasiviswanathan and H. Jin. Efficient private empirical risk minimization for high-dimensional learning. In ICML, pages 488–497, 2016.

    Google Scholar 

  22. S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. What can we learn privately? In FOCS, pages 531–540, 2008.

    Google Scholar 

  23. S. P. Kasiviswanathan, K. Nissim, and H. Jin. Private incremental regression. CoRR, abs/1701.01093, 2017.

    Google Scholar 

  24. M. J. Kearns and U. V. Vazirani. An introduction to computational learning theory. 8(2001):44–58, 1994.

    Google Scholar 

  25. D. Kifer, A. D. Smith, and A. Thakurta. Private convex optimization for empirical risk minimization with applications to high-dimensional regression. In COLT, pages 25.1–25.40, 2012.

    Google Scholar 

  26. J. Lee and C. W. Clifton. Top-k frequent itemsets via differentially private FP-trees. In SIGKDD, pages 931–940, 2014.

    Google Scholar 

  27. N. Li, W. Qardaji, D. Su, and J. Cao. Privbasis: Frequent itemset mining with differential privacy. Proc. VLDB Endow., 5(11):1340–1351, 2012.

    Article  Google Scholar 

  28. F. McSherry. Privacy integrated queries: An extensible platform for privacy-preserving data analysis. Commun. ACM, 53(9), 2010.

    Google Scholar 

  29. P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler. GUPT: Privacy preserving data analysis made easy. In SIGMOD, pages 349–360, 2012.

    Google Scholar 

  30. K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analysis. In STOC, pages 75–84, 2007.

    Google Scholar 

  31. N. Phan, Y. Wang, X. Wu, and D. Dou. Differential privacy preservation for deep auto-encoders: an application of human behavior prediction. In AAAI, pages 1309–1316, 2016.

    Google Scholar 

  32. D. Proserpio, S. Goldberg, and F. McSherry. Calibrating data to sensitivity in private data analysis. PVLDB, 7(8):637–648, 2014.

    Google Scholar 

  33. S. Rana, S. K. Gupta, and S. Venkatesh. Differentially private random forest with high utility. In ICDM, pages 955–960, 2015.

    Google Scholar 

  34. B. I. P. Rubinstein, P. L. Bartlett, L. Huang, and N. Taft. Learning in a large function space: Privacy-preserving mechanisms for SVM learning. CoRR, abs/0911.5708, 2009.

    Google Scholar 

  35. E. Shen and T. Yu. Mining frequent graph patterns with differential privacy. In SIGKDD, pages 545–553, 2013.

    Google Scholar 

  36. R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In SIGSAC, pages 1310–1321, 2015.

    Google Scholar 

  37. T. Steinke and J. Ullman. Between pure and approximate differential privacy. CoRR, abs/1501.06095, 2015.

    Google Scholar 

  38. A. G. Thakurta and A. Smith. Differentially private feature selection via stability arguments, and the robustness of the lasso. In Conference on Learning Theory, pages 819–850, 2013.

    Google Scholar 

  39. J. Ullman. Private multiplicative weights beyond linear queries. In PODS, pages 303–312, 2015.

    Google Scholar 

  40. Y. Wang, J. Lei, and S. E. Fienberg. Learning with differential privacy: Stability, learnability and the sufficiency and necessity of ERM principle. CoRR, abs/1502.06309, 2015.

    Google Scholar 

  41. Y. Wang, Y. Wang, and A. Singh. Differentially private subspace clustering. In NIPS, pages 1000–1008, 2015.

    Google Scholar 

  42. Y. Wang, Y. Wang, and A. Singh. A theoretical analysis of noisy sparse subspace clustering on dimensionality-reduced data. CoRR, abs/1610.07650, 2016.

    Google Scholar 

  43. S. Xu, S. Su, L. Xiong, X. Cheng, and K. Xiao. Differentially private frequent subgraph mining. In ICDE, pages 229–240, 2016.

    Google Scholar 

  44. C. Zeng, J. F. Naughton, and J.-Y. Cai. On differentially private frequent itemset mining. Proc. VLDB Endow., 6(1):25–36, 2012.

    Article  Google Scholar 

  45. J. Zhang, X. Xiao, Y. Yang, Z. Zhang, and M. Winslett. PrivGene: Differentially private model fitting using genetic algorithms. In SIGMOD, pages 665–676, 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhu, T., Li, G., Zhou, W., Yu, P.S. (2017). Differentially Private Data Analysis. In: Differential Privacy and Applications. Advances in Information Security, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-319-62004-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62004-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62002-2

  • Online ISBN: 978-3-319-62004-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics