Advertisement

A Practical Energy Modeling Method for Industrial Robots in Manufacturing

  • Wenjun XuEmail author
  • Huan Liu
  • Jiayi Liu
  • Zude Zhou
  • Duc Truong Pham
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10228)

Abstract

Industrial robots (IRs) are widely used in modern manufacturing systems, and energy problem of IRs is paid more attention to meet requirements of environment protection. Therefore, it is necessary to investigate the approaches to optimize the energy consumption of IRs, and the energy consumption model is the basis for enabling such approaches. Usually, energy consumption modeling for IRs is based on dynamic parameters identification. Meanwhile, the physical parameters, e.g. angle, velocity, acceleration, torque, etc. are all the necessary data of parameter identification. However, since the parts of IRs are not easy to be disassembled and the sensor modules can not be installed easily inside IRs, it is difficult to obtain all such physical parameters through sensing method, in particular the torque data. In this context, a practical energy modeling method by measuring total power for IRs is proposed. This method avoids the problem of directly measuring relevant parameters inside IRs, and the parameter identification process is gradually carried out by several excitation experiments. The experimental results show that the proposed energy modeling method can be used to predict the energy consumption of the process used in robot movement in manufacturing processes, and it can also efficiently support the analysis of the energy consumption characteristics of IRs.

Keywords

Industrial robots Energy modeling Energy consumption Power measurement 

Notes

Acknowledgements

This research is supported by National Natural Science Foundation of China (Grant No. 51305319), the International Science & and Technology Cooperation Program of China (Grant No. 2015DFA70340), and Engineering and Physical Sciences Research Council (EPSRC), UK (Grant No. EP/N018524/1).

References

  1. 1.
    Li, B., Zhang, L., Wang, S., Tao, F., Cao, J., Jiang, X., Song, X., Chai, X.: Cloud manufacturing: a new service-oriented networked manufacturing model. Comput. Integr. Manuf. Syst. 16(1), 1–1343 (2010)Google Scholar
  2. 2.
    Xu, X.: From cloud computing to cloud manufacturing. Rob. Comput.-Integr. Manuf. 28(1), 75–86 (2012)CrossRefGoogle Scholar
  3. 3.
    Ren, L., Zhang, L., Tao, F., Zhao, C., Chai, X., Zhao, X.: Cloud manufacturing: From concept to practice. Enterp. Inf. Syst. 9(2), 186–209 (2015). Taylor & FrancisCrossRefGoogle Scholar
  4. 4.
    Saidur, R.: A review on electrical motors energy use and energy savings. Renew. Sustain. Energy Rev. 14(3), 877–898 (2010)CrossRefGoogle Scholar
  5. 5.
    Yang, A., Pu, J., Wong, C., et al.: By-pass valve control to improve energy efficiency of pneumatic drive system. Control Eng. Pract. 17(6), 623–628 (2009)CrossRefGoogle Scholar
  6. 6.
    Maimon, O., Profeta, E., Singer, S.: Energy analysis of robot task motions. J. Intell. Rob. Syst. 4(2), 175–198 (1991)CrossRefGoogle Scholar
  7. 7.
    Diken, H.: Energy efficient sinusoidal path planning of robot manipulators. Mech. Mach. Theory 29(6), 785–792 (1994)CrossRefGoogle Scholar
  8. 8.
    Sergaki, E., Stavrakakis, G., Pouliezos, A.: Optimal robot speed trajectory by minimization of the actuator motor electromechanical losses. J. Intell. Rob. Syst. 33(2), 187–207 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Huang, M.S., Hsu, Y.L., Fung, R.F.: Minimum-energy point-to-point trajectory planning for a motor-toggle servomechanism. IEEE/ASME Trans. Mechatron. 17(2), 337–344 (2012)CrossRefGoogle Scholar
  10. 10.
    Field, G., Stepanenko, Y.: Iterative dynamic programming: an approach to minimum energy trajectory planning for robotic manipulators. IEEE Int. Conf. Rob. Autom. 3, 2755–2760 (1996)CrossRefGoogle Scholar
  11. 11.
    Kim, C.H., Kim, B.K.: Minimum-energy motion planning for differential-driven wheeled mobile robots. Motion Plan. 192–226 (2008)Google Scholar
  12. 12.
    Yongguo, M., Yung-Hsiang, L., Hu, Y., Lee, C.: Deployment of mobile robots with energy and timing constraints. IEEE Trans. Rob. 22(3), 507–522 (2006)CrossRefGoogle Scholar
  13. 13.
    Roos, F., Johansson, H., Wikander, J.: Optimal selection of motor and gearhead in mechatronic applications. Mechatronics 16(1), 63–72 (2006)CrossRefGoogle Scholar
  14. 14.
    Izumi, T., Zhou, H., Li, Z.: Optimal design of gear ratios and offset for energy conservation of an articulated manipulator. IEEE Trans. Autom. Sci. Eng. 6(3), 551–557 (2009)CrossRefGoogle Scholar
  15. 15.
    Meike, D., Pellicciari, M., Berselli, G.: Energy efficient use of multirobot production lines in the automotive industry: detailed system modeling and optimization. IEEE Trans. Autom. Sci. Eng. 11(3), 798–809 (2014)CrossRefGoogle Scholar
  16. 16.
    Paryanto, Brossog, M., Bornschlegl, M., Franke, J.: Reducing the energy consumption of industrial robots in manufacturing systems. Int. J. Adv. Manuf. Technol. 78(5–8), 1315–1328 (2015)CrossRefGoogle Scholar
  17. 17.
    Wu, J., Wang, J., You, Z.: An overview of dynamic parameter identification of robots. Rob. Comput.-Integr. Manuf. 26(5), 414–419 (2010)CrossRefGoogle Scholar
  18. 18.
    Swevers, J., Verdonck, W., Schutter, J.D.: Dynamic model identification for industrial robots. IEEE Control Syst. Mag. 27(5), 58–71 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Chen, E.W., Liu, Z.S., Gan, F.J.: Method of identifying inertial parameters of manipulator based on wrist force sensor. Robot 28(2), 125–129 (2006)Google Scholar
  20. 20.
    Christoforou, E.G.: On-line parameter identification and adaptive control of rigid robots using base reaction forces/torques. In: IEEE International Conference on Robotics & Automation, pp. 4956–4961 (2007)Google Scholar
  21. 21.
    Verdonck, W., Swevers, J., Samin, J.: Experimental dynamic robot identification: advantages of combining internal and external measurements and of using periodic excitation. J. Dyn. Syst. Meas. Control-Trans. ASME 123(4), 630–636 (2001)CrossRefGoogle Scholar
  22. 22.
    Gautier, M., Khalil, W.: Exciting trajectories for the identification of base inertial parameters of robots. Int. J. Robot. Res. 11(4), 362–375 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Wenjun Xu
    • 1
    • 2
    Email author
  • Huan Liu
    • 1
    • 2
  • Jiayi Liu
    • 1
    • 2
  • Zude Zhou
    • 1
    • 2
  • Duc Truong Pham
    • 3
  1. 1.School of Information EngineeringWuhan University of TechnologyWuhanChina
  2. 2.Key Laboratory of Fiber Optic Sensing Technology and Information ProcessingMinistry of EducationWuhanChina
  3. 3.Department of Mechanical Engineering, School of EngineeringUniversity of BirminghamBirminghamUK

Personalised recommendations