Traffic Flow Prediction with Improved SOPIO-SVR Algorithm

  • Xuejun Cheng
  • Lei RenEmail author
  • Jin Cui
  • Zhiqiang Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10228)


In urban public transport, the traffic flow prediction is a classical non-linear complicated optimization problem, which is very important for public transport system. With the rapid development of the big data, Smart card data of bus which is provided by millions of passengers traveling by bus across several days plays a more and more important role in our daily life. The issue that we address is whether the data mining algorithm and the intelligent optimization algorithm can be applied to forecast the traffic flow from big data of bus. In this paper, a novel algorithm which called mixed support vector regression with sub-space orthogonal pigeon-Inspired Optimization (SOPIO-MSVR) is used to predict the traffic flow and optimize the algorithm progress. Results show the SOPIO-MSVR algorithm outperforms other algorithms by a margin and is a competitive algorithm. And the research can make the significant contribution to the improvement of the transportation.


Traffic flow prediction SOPIO-MSVR Classification model 



The research is supported by the NSFC (National Science Foundation of China) Projects (No. 61572057) in China, the National High-Tech Research and Development Plan of China under Grant No. 2015AA042101.


  1. 1.
    Pelletier, M.P., Trépanier, M., Morency, C.: Smart card data use in public transit: a literature review. Transp. Res. Part C: Emerging Technol. 19(4), 557–568 (2011)CrossRefGoogle Scholar
  2. 2.
    Zheng, X., Chen, W., Wang, P., et al.: Big data for social transportation. IEEE Trans. Intell. Transp. Syst. 17(3), 620–630 (2016)CrossRefGoogle Scholar
  3. 3.
    Min, Y.H., Ko, S.J., Kim, K.M., et al.: Mining missing train logs from Smart Card data. Transp. Res. Part C: Emerging Technol. 63, 170–181 (2016)CrossRefGoogle Scholar
  4. 4.
    Dimond, M., Smith, G., Goulding, J.: Improving route prediction through user journey detection. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 476–479. ACM (2013)Google Scholar
  5. 5.
    Ma, X., Wu, Y.J., Wang, Y., et al.: Mining smart card data for transit riders’ travel patterns. Transp. Res. Part C: Emerging Technol. 36, 1–12 (2013)CrossRefGoogle Scholar
  6. 6.
    Ferreira, N., Poco, J., Vo, H.T., et al.: Visual exploration of big spatio-temporal urban data: a study of New York city taxi trips. IEEE Trans. Vis. Comput. Graph. 19(12), 2149–2158 (2013)CrossRefGoogle Scholar
  7. 7.
    Jin, F., Sun, S.: Neural network multitask learning for traffic flow forecasting. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1897–1901. IEEE (2008)Google Scholar
  8. 8.
    Ma, Z., Xing, J., Mesbah, M., et al.: Predicting short-term bus passenger demand using a pattern hybrid approach. Transp. Res. Part C: Emerging Technol. 39, 148–163 (2014)CrossRefGoogle Scholar
  9. 9.
    Levin, M., Tsao, Y.-D.: On forecasting freeway occupancies and volumes. Transp. Res. Rec. 773, 47–49 (1980)Google Scholar
  10. 10.
    van der Voort, M., Dougherty, M., Watson, S.: Combining Kohonen maps with ARIMA time series models to forecast traffic flow. Transp. Res. C Emerging Technol. 4(5), 307–318 (1996)CrossRefGoogle Scholar
  11. 11.
    Williams, B.M.: Multivariate vehicular traffic flow prediction—evaluation of ARIMAX modeling. Transp. Res. Rec. 1776, 194–200 (2001)CrossRefGoogle Scholar
  12. 12.
    Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J. Transp. Eng. 129(6), 664–672 (2003)CrossRefGoogle Scholar
  13. 13.
    Ghosh, B., Basu, B., O’Mahony, M.: Multivariate short-term traffic flow forecasting using time-series analysis. IEEE Trans. Intell. Transp. Syst. 10(2), 246–254 (2009)CrossRefGoogle Scholar
  14. 14.
    Davis, G.A., Nihan, N.L.: Nonparametric regression and short-term reeway traffic forecasting. J. Transp. Eng. 117(2), 178–188 (1991)CrossRefGoogle Scholar
  15. 15.
    Sun, S., Zhang, C., Guoqiang, Y.: A Bayesian network approach to traffic flow forecasting. IEEE Intell. Transp. Syst. Mag. 7(1), 124–132 (2006)CrossRefGoogle Scholar
  16. 16.
    Jeong, Y.S., Byon, Y.J., Castro-Neto, M.M., Easa, S.M.: Supervised weighting-online learning algorithm for short-term traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 14(4), 1700–1707 (2013)CrossRefGoogle Scholar
  17. 17.
    Zhong, M., Sharma, S., Lingras, P.: Short-term traffic prediction on different types of roads with genetically designed regression and time delay neural network models. J. Comput. Civil Eng. 19(1), 94–103 (2005)CrossRefGoogle Scholar
  18. 18.
    Zargari, S.A., Siabil, S.Z., Alavi, A.H., Gandomi, A.H.: A computational intelligence-based approach for short-term traffic flow prediction. Expert Syst. 29(2), 124–142 (2012)Google Scholar
  19. 19.
    Chen, C., Wang, Y., Li, L., Hu, J., Zhang, Z.: The retrieval of intra-day trend and its influence on traffic prediction. Transp. Res. C Emerging Technol. 22, 103–118 (2012)CrossRefGoogle Scholar
  20. 20.
    Lippi, M., Bertini, M., Frasconi, P.: Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised Dlearning. IEEE Trans. Intell. Transp. Syst. 14(2), 871–882 (2013)CrossRefGoogle Scholar
  21. 21.
    Van Hinsbergen, C.P., Van Lint, J.W., Sanders, F.M.: Short term traffic prediction models. Presented at the ITS World Congress, Beijing, China (2007)Google Scholar
  22. 22.
    Karlaftis, M.G., Vlahogianni, E.I.: Statistical methods versus neural networks in transportation research: differences, similarities and some insights. Transp. Res. Part C: Emerging Technol. 19(3), 387–399 (2011)CrossRefGoogle Scholar
  23. 23.
    Huang, W., Song, G., Hong, H., et al.: Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans. Intell. Transp. Syst. 15(5), 2191–2201 (2014)CrossRefGoogle Scholar
  24. 24.
    Castro-Neto, M., Jeong, Y.-S., Jeong, M.-K., Han, L.D.: Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Syst. Appl. 36(3), 6164–6173 (2009)CrossRefGoogle Scholar
  25. 25.
    Sun, S.: Traffic flow forecasting based on multitask ensemble learning. In: Proceedings of the 1st ACM/SIGEVO Summit Genetic Evolutionary Computation, pp. 961–964 (2009)Google Scholar
  26. 26.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  27. 27.
    Meyer, D., Wien, F.H.T.: Support vector machines. The Interface to libsvm in package e1071 (2015)Google Scholar
  28. 28.
    Nieto, P.J.G., Garcia-Gonzalo, E., Lasheras, F.S., et al.: Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability. Reliab. Eng. Syst. Saf. 138, 219–231 (2015)CrossRefGoogle Scholar
  29. 29.
    Duan, H., Qiao, P.: Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. Int. J. Intell. Comput. Cybern. 7(1), 24–37 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Duan, H., Wang, X.: Echo state networks with orthogonal pigeon-inspired optimization for image restoration. IEEE Trans. Neural Netw. Learn. Syst. 27, 2413–2425 (2016). doi: 10.1109/TNNLS.2015.2479117 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhang, B., Duan, H.: Three-dimensional path planning for uninhabited combat aerial vehicle based on predator-prey pigeon-inspired optimization in dynamic environment. IEEE/ACM Trans. Comput. Biol. Bioinform. 14, 97–107 (2016). doi: 10.1109/TCBB.2015.2443789 CrossRefGoogle Scholar
  32. 32.
    Li, C., Duan, H.: Target detection approach for UAVs via improved pigeon-inspired optimization and edge potential function. Aerosp. Sci. Technol. 39, 352–360 (2014)CrossRefGoogle Scholar
  33. 33.
    Dou, R., Duan, H.: Pigeon inspired optimization approach to model prediction control for unmanned air vehicle. Aircr. Eng. Aerosp. Technol. 88(1), 108–116 (2016)CrossRefGoogle Scholar
  34. 34.
    Wang, Y., Liu, H., Cai, Z., et al.: An orthogonal design based constrained evolutionary optimization algorithm. Eng. Optim. 39(6), 715–736 (2007)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Li, M.W., Han, D.F., Wang, W.: Vessel traffic flow forecasting by RSVR with chaotic cloud simulated annealing genetic algorithm and KPCA. Neurocomputing 157, 243–255 (2015)CrossRefGoogle Scholar
  36. 36.
    Zhang, Y., Zhang, Y., Haghani, A.: A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model. Transp. Res. Part C: Emerging Technol. 43, 65–78 (2014)CrossRefGoogle Scholar
  37. 37.
    Smits, G.F., Jordaan, E.M.: Improved SVM regression using mixtures of kernels. In: Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN 2002, vol. 3, pp. 2785–2790. IEEE (2002)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Xuejun Cheng
    • 1
    • 2
  • Lei Ren
    • 1
    • 2
    Email author
  • Jin Cui
    • 1
    • 2
  • Zhiqiang Zhang
    • 1
    • 2
  1. 1.School of Automation Science and Electrical EngineeringBeihang UniversityBeijingChina
  2. 2.Engineering Research Center of Complex Product Advanced Manufacturing SystemMinistry of EducationBeijingChina

Personalised recommendations