Skip to main content

The Smallest Normal Edge Polytopes with No Regular Unimodular Triangulations

  • Chapter
  • First Online:
Homological and Computational Methods in Commutative Algebra

Abstract

The edge polytope of a finite graph is the convex hull of the column vectors of its vertex-edge incidence matrix. In this paper, we discuss the existence of a regular unimodular triangulation of normal edge polytopes of finite graphs. For normal edge polytopes of finite graphs with d vertices, n edges, and no regular unimodular triangulations, we determine the polytope that has the following: (1) the smallest number of vertices (d = 9), (2) the smallest number of edges (n = 15), and (3) the smallest codimension (nd = 4 andd = 17).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. 4ti2 team, 4ti2– A software package for algebraic, geometric and combinatorial problems on linear spaces. http://www.4ti2.de

  2. W. Bruns, J. Gubeladze, Normality and covering properties of affine semigroups. J. Reine Angew. Math. 510, 161–178 (1999)

    MathSciNet  MATH  Google Scholar 

  3. W. Bruns, B. Ichim, T. Römer, R. Sieg, C. Söger, Normaliz. Algorithms for rational cones and affine monoids. Available at https://www.normaliz.uni-osnabrueck.de

  4. R. Diestel, Graph Theory (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  5. D. Grayson, M. Stillman, Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/

  6. T. Hibi (ed.), Gröbner Bases: Statistics and Software Systems (Springer, Berlin, 2013)

    MATH  Google Scholar 

  7. B. McKay, nauty. http://pallini.di.uniroma1.it/

  8. H. Ohsugi, Unimodular regular triangulations of (0,1)–polytopes associated with finite graphs, in Algebraic Engineering, ed. by C.L. Nehaniv, M. Ito (World Scientific, Singapore, 1999), pp. 159–171

    Google Scholar 

  9. H. Ohsugi, Toric ideals and an infinite family of normal (0,1)–polytopes without unimodular regular triangulations. Discrete Comput. Geom. 27, 551–565 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Ohsugi, T. Hibi, Normal polytopes arising from finite graphs. J. Algebra 207, 409–426 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Ohsugi, T. Hibi, A normal (0,1)-polytope none of whose regular triangulations is unimodular. Discrete Comput. Geom. 21, 201–204 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Ohsugi, T. Hibi, Indispensable binomials of finite graphs. J. Algebra Appl. 4, 1–15 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Ohsugi, T. Hibi, Centrally symmetric configurations of integer matrices. Nagoya Math. J. 216, 153–170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Simis, W.V. Vasconcelos, R.H. Villarreal, On the ideal theory of graphs. J. Algebra 167, 389–416 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Simis, W.V. Vasconcelos, R.H. Villarreal, The integral closure of subrings associated to graphs. J. Algebra 199, 281–289 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Sturmfels, Gröbner Bases and Convex Polytopes (American Mathematical Society, Providence, RI, 1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidefumi Ohsugi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hamano, G. et al. (2017). The Smallest Normal Edge Polytopes with No Regular Unimodular Triangulations. In: Conca, A., Gubeladze, J., Römer, T. (eds) Homological and Computational Methods in Commutative Algebra. Springer INdAM Series, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-61943-9_10

Download citation

Publish with us

Policies and ethics