Advertisement

Prediction of Swelling Pressure of Compacted Bentonite with Respect to Void Ratio Based on Diffuse Double Layer Theory

  • Haiquan Sun
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)

Abstract

Compacted bentonite was chosen as the buffer and backfill material in high level nuclear waste disposal due to its high swelling pressure and low permeability. The estimation of swelling pressure is essential in design and construct the nuclear repositories. The swelling pressure model of compacted bentonite has been developed by former researchers based on Gouy-Chapman diffuse double layer theory. It is effective in predicting low swelling pressure (low compaction dry density), while it is invalidated in simulating high swelling pressure (high compaction dry density). Based on the published literature data of MX80 bentonite, the new relationship between nondimensional midplane potential function, u, and nondimensional distance function, Kd, is established. The new relationship is based on the Gouy-chapman theory by considering the variation of void ratio. The proposed equations are applied to compute swelling pressure of other bentonites (FEBEX, Bavaria bentonite, Bentonite S-2, FoCa bentonite and GMZ bentonite) based on the reported experimental data. Results show that the predicted swelling pressure has a good agreement with the experimental swelling pressure.

Notes

Acknowledgments

The financial support by the research grant No. 846216 of Charles University Grant Agency is greatly appreciated. The author is grateful to Dr. S. Tripathy for discussion.

References

  1. Bolt, G.H.: Physico-chemical analysis of the compressibility of pure clays. Géotechnique 6(2), 86–93 (1956). doi: 10.1680/geot.1956.6.2.86 CrossRefGoogle Scholar
  2. Bucher, F., Müller-Vonmoos, M.: Bentonite as a containment barrier for the disposal of highly radioactive waste. Appl. Clay Sci. 4(2), 157–177 (1989). doi: 10.1016/0169-1317(89)90006-9 CrossRefGoogle Scholar
  3. Chapman, D.L.: A contribution to the theory of electro-capillarity. Philos. Mag. 25, 475–481 (1913). doi: 10.1080/14786440408634187 CrossRefGoogle Scholar
  4. Dixon, D.A., Gray, M.N.: The engineering properties of buffer material. Technical report TR-350, Fuel Waste Technology Branch, Whiteshell Laboratories, Pinawa, Man (1985)Google Scholar
  5. ENRESA. FEBEX project — full scale engineered barriers experiments for a deep geological respiratory for high level radioactive waste in crystalline host rock. Final report, Publicación téechnica 1/2000, Empresa Nacional de Residuos Radiactivos SA (ENRESA), Madrid, Spain (2000)Google Scholar
  6. Gouy, G.: Electric charge on the surface of an electrolyte. J. Phys. 4(9), 457 (1910)Google Scholar
  7. Imbert, C., Villar, M.V.: Hydro-mechanical response of a bentonite pellets/powder mixture upon infiltration. Appl. Clay Sci. 32, 197–209 (2006). doi: 10.1016/j.clay.2006.01.005 CrossRefGoogle Scholar
  8. Komine, H., Ogata, N.: Prediction for swelling characteristics of compacted bentonite. Can. Geotech. J. 33, 11–22 (1996). doi: 10.1139/t96-021 CrossRefGoogle Scholar
  9. Komine, H.: Simplified evaluation for swelling characteristics of bentonites, 507. Eng. Geol. 71(3–4), 265–279 (2004). doi: 10.1016/S0013-7952(03)00140-6 CrossRefGoogle Scholar
  10. Japan Nuclear Cycle Development Institute. H12: project to establish the scientific and technical basis for HLW disposal in Japan: supporting report 2 (respiratory design and engineering Technology). Japan Nuclear Cycle Development Institute, Tokyo (1999)Google Scholar
  11. Lajudie, A., Raynal, J., Petit, J.-C., Toulhoat, P.: Clay-based materials for engineered barriers: a review. Mater. Res. Soc. Symp. Proc. 353, 221–229 (1996). doi: 10.1557/PROC-353-221 CrossRefGoogle Scholar
  12. Marcial, D., Delage, P., Cui, Y.J.: On the high stress compression of bentonites. Can. Geotech. J. 39, 812–820 (2002). doi: 10.1139/t02-019 CrossRefGoogle Scholar
  13. Mitchell, J.K.: Fundamentals of Soil Behaviour, 2nd edn. Wiley, New York (1993)Google Scholar
  14. Müller-Vonmoos, M., Kahr, G.: Bereitstellung von Bentonit für Laboruntersuchungen. Nagra Technischer Bericht 82-04. Nagra, Wettingen, Switzerland (1982)Google Scholar
  15. Müller-Vonmoos, M., Kahr, G.: Mineralogische Untersuchungen von Wyoming Bentonit MX-80 und Montigel. Nagra Technischer Bericht 83-12 (1983)Google Scholar
  16. Norrish, K.: The swelling of montmorillonite. Discuss. Faraday Soc. 18, 120–134 (1954). doi: 10.1039/DF9541800120 CrossRefGoogle Scholar
  17. Pusch, R.: Mineral–water interactions and their influence on the physical behaviour of highly compacted Na bentonite. Can. Geotechn. J. 19, 381–387 (1982). doi: 10.1139/t82-041 CrossRefGoogle Scholar
  18. Schanz, T., Al-Badran, Y.: Swelling pressure characteristics of compacted Chinese Gaomiaozi bentonite GMZ01. Soils Found. 54(4), 748–759 (2014). doi: 10.1016/j.sandf.2014.06.026 CrossRefGoogle Scholar
  19. Schanz, T., Tripathy, S.: Swelling pressure of a divalent-rich bentonite: diffuse double-layer theory revisited. Water Resources Res. 45(2), W00C12 (2009). doi: 10.1029/2007WR006495 Google Scholar
  20. Sridharan, A., Jayadeva, M.S.: Double layer theory and compressibility of clays. Géotechnique 32(2), 133–144 (1982). doi: 10.1680/geot.1982.32.2.133 CrossRefGoogle Scholar
  21. Tripathy, S., Sridharan, A., Schanz, T.: Swelling pressures of compacted bentonites from diffuse double layer theory. Can. Geotech. J. 41, 437–450 (2004). doi: 10.1139/t03-096 CrossRefGoogle Scholar
  22. Van Olphen, H.: An Introduction to Clay Colloid Chemistry: for Clay Technologists, Geologists and Soil Scientists. Interscience, New York (1963). doi: 10.1126/science.143.3610.1023-a Google Scholar
  23. Van Geet, M., Bastiaens, W., Volckaert, G., Weetjens, E., Sillen, X., Maes, N., Imbert, C., Billaud, P., Touzé, G., Filippi, M., Plas, F., Villar, M.V., García-Gutiérrez, M., Mingarro, M., Gens, A., Vallejan, B.: A large-scale in situ demonstration test for repository sealing in an argillaceous host rock – Phase II, Technical report NO. EUR 24161 EN, European Commission, Contract No. FIKW-CT-2000-00010 (2009)Google Scholar
  24. Verwey, E.J.W., Overbeek, J.: Theory of the stability of lyophobic colloids. Elsevier, Amsterdam (1948). doi: 10.1021/j150453a001 Google Scholar
  25. Wen, Z.J.: Physical property of China’s buffer material for high-level radioactive waste Repositories. Chinese J. Rock Mech. Eng. 25(4), 794–800 (2006)Google Scholar
  26. Yong, R.N.: Soil suction and soil-water potentials in swelling clays in engineered barriers. Eng. Geol. 54, 3–13 (1999). doi: 10.1080/14786440408634187. AmsterdamCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of ScienceCharles UniversityPragueCzech Republic

Personalised recommendations