Treatment of Collapsible Soils by Cement Using the Double Consolidation Method

  • Abbeche KhelifaEmail author
  • Lahmadi Azeddine
  • Bahloul Ouassila
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)


The stability of civil engineering constructions is a statically indeterminate problem when they were built on collapsible soils. These soils present significant changes due to sudden decrease in volume after wetting with or without loading. This paper is aimed at studying the treatment by cement of a collapsible soil, which was reconstituted in laboratory. Oedometer tests were carried out by using the double consolidation method. The main aim of this experimental study is to investigate the influence of this kind of treatment and the initial conditions on the collapse of the soils. The results obtained show that it is possible to reduce the soil collapse potential to an acceptable level by adding low cement contents to a test specimen at various initial water contents and under the effect of several compacting energies. These experimental results contribute in solving the problems of soil collapse by treating to enhance its resistance.



The authors want to express their sincere gratitude to all members of laboratory LNHC Batna and Adwan Chemicals Industries Cie. (Algeria).


  1. Abbeche, K., et al.: Influence of relative density and clay fraction on soils collapse. In: Schanz, T. (ed.) Experimental Unsaturated Soil Mechanics. Springer Proceedings in Physics, vol. 112, pp. 3–9. Springer, Heidelberg (2007). doi: 10.1007/3-540-69873-6_1
  2. Abbeche, K., et al.: Lime stabilisation of a collapsible soil. In: Proceedings of the 1st International Seminar Innovation and Valorization in Civil Engineering. Hammamet, Tunisia, pp. 161–168 (2009)Google Scholar
  3. Abbeche, K., et al.: Treatment of collapsible soils by salts using the double consolidation method. In: Hoyos, L.R., Zhang, X., Puppala, A.J. (eds.) Experimental and Applied Modeling of Unsaturated Soils. ASCE Geotechnical Special Publication, vol. 202, pp. 69–78 (2010). doi: 10.1061/41103(376)10
  4. Abbeche, K., Laouar, M.S.: Ultrasound as a new approach for the prediction of collapsible soils. In: Zhang, L., Wang, Y., Wang, G., Dianqing, L. (eds.) Geotechnical Safety and Risk IV, pp. 529–537. CRC Press, London (2013). doi: 10.1201/b16058-81
  5. Alawaji, H.A.: Shear induced collapse settlement of arid soils. Geotech. Geol. Eng. 19, 1–19 (2001). doi: 10.1023/A:1012223622250 CrossRefGoogle Scholar
  6. ASTM D 2487-06. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System) (2006). doi: 10.1520/D2487-06
  7. ASTM D 5333-03. Standard test method for measurement of collapse potential of soils (2003). doi: 10.1520/D5333-03
  8. Ayadat, T., Belouahri, B.: Influence du coefficient d’uniformité sur l’amplitude et le taux de l’affaissement des sols. Revue Francaise de Géotechnique 76, pp. 25–34. Presses de l’Ecole Nationale des Ponts et Chaussées, Paris (1996)Google Scholar
  9. Ayadat, T., Hanna, A.: Prediction of collapse behaviour in soil. Revue Européennede Génie Civil 11(5), 603–619 (2007). doi: 10.1080/17747120.2007.9692947 CrossRefGoogle Scholar
  10. Ayadat, T., Hanna, A.: Effects of hydraulic shear stress and rate of erosion on the magnitude, degree, and rate of collapse. Geomech. Geoeng. Int. J. 3(1), 59–69 (2008). doi: 10.1080/17486020701759644 CrossRefGoogle Scholar
  11. Ayadat, T., Hanna, A.: Design of foundations built on a shallow depth (less than 4 m) of Egyptian macro-porous collapsible soils. Open J. Geol. 2013(3), 209–215 (2013). doi: 10.4236/ojg.2013.33024 CrossRefGoogle Scholar
  12. Clemence, S.P., Finbarr, A.O.: Design considerations for collapsible soils. Geotech. Eng. Div. ASCE 107(GT3), 305–317 (1981). doi: 10.1016/0148-9062(81)91226-2 Google Scholar
  13. Jennings, J.E., Knight, K.: A guide of construction on or with materials exhibiting additional settlement due to collapse of grain structure. In: Proceedings of the 6th Regional Conference for Africa of Soil Mechanics and Foundation Engineering, pp. 99–105 (1975)Google Scholar
  14. Lahmadi, A., et al.: Prediction of collapsible soils by proctor tests. In: CD-ROM of the 10th International Congress on Advances in Civil Engineering, Ankara, Turkey (2012)Google Scholar
  15. Lawton, E.C., et al.: Collapse of compacted clayey sand. J. Geotech. Eng. 115(9), 1252–1267 (1989). doi: 10.1061/(ASCE)0733-9410(1989)115:9(1252) CrossRefGoogle Scholar
  16. Lefebvre, G., Ben Belfadhel, M.: Collapse at permeation for a compacted non-plastic fill. In: Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, pp. 619–622. Balkema, Rotterdam (1989)Google Scholar
  17. Momeni, W.M., et al.: Evaluation of soil collapse potential in regional scale. Nat. Hazards 64, 459–479 (2012). doi: 10.1007/s11069-012-0252-z CrossRefGoogle Scholar
  18. Reginatto, A.R., Ferrero, J.C.: Collapse potential of soils and soil-water chemistry. In: Proceedings of the 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, vol. 2, pp. 177–183 (1973)Google Scholar
  19. Rogers, C.D.F.: Types and distribution of collapsible soils. In: Derbyshire, E., Dijkstra, T., Smalley, I.J. (eds.) Genesis and properties of collapsible soils, pp. 1–17. Kluwer Academic Publishers/Springer, Netherlands (1995). doi: 10.1007/978-94-011-0097-7_1

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Abbeche Khelifa
    • 1
    Email author
  • Lahmadi Azeddine
    • 2
  • Bahloul Ouassila
    • 1
  1. 1.Laboratory of Applied Hydraulic Research (LARYHA), Department of Civil EngineeringUniversity of Batna 2FesdisAlgeria
  2. 2.Department of Civil EngineeringUniversity of M’silaM’SilaAlgeria

Personalised recommendations