Advertisement

Effect of Cement on Suction and Pore Size Distribution Before and After Swelling of a Natural Clay from Algeria

  • Souad Amel Bourokba Mrabent
  • Ramzy Djelloul
  • Abdelkader Hachichi
  • Jean Marie Fleureau
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)

Abstract

This paper presents an experimental work on natural clay from the town of Mers El Kebir located in the suburbs of the city of Oran (West of Algeria). The aim of the study is primarily to determine suction using the filter paper method. Secondly the pore distribution was determined using the mercury intrusion porosimetry before and after swelling. The treated and untreated samples were compacted at Standard Optimum Proctor (SOP). The results of the cumulative intrusion curves show that the pore volume of the treated samples is a little higher than that of untreated ones before swelling and a little lower after swelling. This study, which was performed in LMST (Laboratoire Matériaux Sol et Thermique) laboratory (Algeria) with the collaboration of MSSMAT (Laboratoire de Mécanique des Sols, Structures et Matériaux) laboratory (France), is a contribution to the understanding of the swelling phenomena.

References

  1. Al Rawas, A.A., Goosen, M.F.A.: Expansive Soils - Recent Advances in Characterization and Treatment. Taylor & Francis Group, Balkema, London (2006)CrossRefGoogle Scholar
  2. Al-Rawas, A.A., Hagoa, A.W., Hilal, A.-S.: Effect of lime, cement and Sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman. Build. Environ. 40(5), 681–687 (2005)CrossRefGoogle Scholar
  3. Aparna, R.: Soil stabilization using rice husk ash and cement. Int. J. Civil Eng. Res. 5(1), 49–54 (2014). ISSN 2278-3652Google Scholar
  4. ASTM D-4546: Standard test method for one-dimensional swell or settlement potential of cohesive soils. Annual Book of ASTM Standards, vol. 04.08. American Society for Testing and Materials, Easton, Philadelphia (1990)Google Scholar
  5. ASTM D-5298: Standard test method for measurement of soil potential (suction) using filter paper. ASTM International, West Conshohocken, PA (1994). www.astm.org
  6. ASTM D-698: Standard test method for laboratory compaction characteristics of soil using standard effort. Annual Book of ASTM Standards, vol. 04.08. American Society for Testing and Materials, Easton, PA (2000)Google Scholar
  7. Balasubramaniam, A.S., Kamruzzaman, A.H., Uddin, K., Lin, D.G., Phienwij, N., Bergado, D.T.: Chemical stabilization of Bangkok clay with cement, lime, and fly ash additives. In: 13th Southeast Asian Geotechnical Conference, pp. 253–258 (1998)Google Scholar
  8. Bin, S., Zhibin, L., Yi, C., Xiaoping, Z.: Micropore structure of aggregates in treated soils. J. Mater. Civil Eng. 19, 99–105 (2007). ASCECrossRefGoogle Scholar
  9. Bourokba, S.A., Hachichi, A., Taibi, S., Fleureau, J.-M.: Conductivité hydraulique non saturée de l’argile de Mers El Kébir (Algérie). EJECE 14, 1297–1315 (2010)Google Scholar
  10. Bourokba, S.A.: Étude de la conductivité hydraulique et de la stabilisation par ajouts de liants hydrauliques de l’argile de Mers El Kébir. Doctoral thesis, University of Science and Technology, Med Boudiaf, Oran, Algeria (2011)Google Scholar
  11. Bourokba, S.A., Hachichi, A., Fleureau, J.-M.: Influence du cement sur le gonflement et la microstructure d’une argile naturelle. XXIXe Rencontres Universitaires de Génie Civil, Tlemcen, Algeria (2011)Google Scholar
  12. Bourokba, S.A., Hachichi, A., Soulib, H., Taibi, S., Fleureau, J.M.: Effect of lime on some physical parameters of a natural expansive clay from Algeria. Eur. J. Environ. Civil Eng. 21, 108–125 (2015)CrossRefGoogle Scholar
  13. Cabane, N.: Sols traités à la chaux et aux liants hydrauliques Contribution à l’identification et à l’analyse des éléments perturbateurs de la stabilisation. Ph.D. thesis, École Nationale Supérieure des Mines de Saint-Étienne, France (2004)Google Scholar
  14. Chew, S.H., Kamruzzaman, A.H.M., Lee, F.H.: Physicochemical and engineering behavior of cement treated clays. J. Geotech. Geoenviron. Eng. 130(7), 696–706 (2004)CrossRefGoogle Scholar
  15. Chu, T.Y., Mou, C.H.: Soil-suction approach for evaluation of swelling potential. In: Transportation Research Record 790, pp. 54–60 (1981). Géotechnique 53(1), 27–40Google Scholar
  16. Cook, R.A., Hover, K.C.: Mercury porosimetry of hardened cement pastes. Cem. Concr. Res. 29, 933–943 (1999)CrossRefGoogle Scholar
  17. Delage, P., Lefebvre, G.: Study of the structure of a sensitive Champlain clay and of its evolution during consolidation. Can. Geotech. J. 21, 21–35 (1984)CrossRefGoogle Scholar
  18. Delage, P., Pellerin, M.I.: Influence de la lyophilisation sur la structure d’une argile sensible du Quebec. Clay Miner. 19, 151–160 (1984)CrossRefGoogle Scholar
  19. Fleureau, J.-M., Kheirbek-Saoud, S., Soemitro, R., Taibi, S.: Behavior of clayey soils on drying–wetting paths. Can. Geotech. J. 30, 287–296 (1993)CrossRefGoogle Scholar
  20. Hachichi, A., Bourokba, S.A., Fleureau, J.-M.: Stabilisation chimique des sols gonflants de la région d’Oran. Revue Française de Géotechnique 118, 3–11 (2007)Google Scholar
  21. Hachichi, A., Fleureau, J.-M.: Caractérisation et stabilisation de quelques sols gonflants d’Algérie. Revue Française de Géotechnique 86, 37–51 (1999)Google Scholar
  22. Hachichi, A., Bourokba, S.A., Bengraa, L., Fleureau, J.-M.: Influence de l’ajout de chaux sur le potentiel gonflement et la microstructure d’une argile naturelle d’Algérie. INVACO2: Séminaire International, Innovation et valorisation en génie civil matériaux et construction, Rabat, Morroco (2011)Google Scholar
  23. Horpibulsuk, S., Rachan, R., Chinkulkijniwat, A., Raksachon, Y., Suddeepong, A.: Analysis of strength development in cement-stabilized silty clay from microstructure considerations. Constr. Build. Mater. 24, 2011–2021 (2010)CrossRefGoogle Scholar
  24. Ikhlef, N.S., Ghembaza, M.S., Dadouch, M.: Effect of cement and compaction on the physicochemical behavior of a material in the region of Sidi Bel Abbes. Eng. Technol. Appl. Sci. Res. 4(4), 677–680 (2014)Google Scholar
  25. Lemaire, K., Dimitri, D., Bonnet, S., Legret, M.: Effects of lime and cement treatment on the physicochemical, microstructural and mechanical characteristics of a plastic silt. Eng. Geol. 166, 255–261 (2013)CrossRefGoogle Scholar
  26. Lloret, M., Villar, M., Sanchez, A., Gens, X., Pintado, E., Alonso, E.E.: Mechanical behaviour of heavily compacted bentonite under high suction changes (2003)Google Scholar
  27. Millogo, Y., Morel, J.-C.: Microstructural characterization and mechanical properties of cement stabilised adobes. Mater. Struct. 45, 1311–1318 (2012)CrossRefGoogle Scholar
  28. Osula, D.O.A.: A comparative evaluation of cement and lime modification of laterite. Eng. Geol. 42(1), 71–81 (1996)CrossRefGoogle Scholar
  29. Pakbaz, M.S., Alipour, R.: Influence of cement addition on the geotechnical properties of an Iranian clay. Appl. Clay Sci. 67, 68, 1–4 (2012)CrossRefGoogle Scholar
  30. Parrot, J.F., Verdoni, P.A., Delaune-Mayere, M.: Analyse modale semi-quantitative d’après l’étude des rayons X [Semi quantitative modal analysis from XRD study]. Analusis 13, 373–378 (1985)Google Scholar
  31. Pile, K.C.: The relationship between matrix and solute suction, swelling pressure, and magnitude of swelling in reactive clays. In: Webater, J.A. (ed.) Third Australia New Zealand Conference on Geomechanics, vol. 1, pp. 197–201 (1983)Google Scholar
  32. Portelinha, F.H.M., Lima, D.C., Fontes, M.P.F., Carvalho, C.A.B.: Modification of a lateritic soil with lime and cement: an economical alternative for flexible pavement layers. Soils Rocks 35(1), 51–63 (2012). São PauloGoogle Scholar
  33. Sariosseiri, F., Muhunthan, B.: Effect of cement treatment on geotechnical properties of some Washington State soils. Eng. Geol. 104(2), 119–125 (2009)CrossRefGoogle Scholar
  34. Tran, N.L.: Un nouvel essai d’identification des sols: l’essai au bleu de méthylène. Bulletin de Liaison des Ponts et Chaussées 88, 136–137 (1977)Google Scholar
  35. Venkatarama, R., Prasanna, K.: Cement stabilized rammed earth. Part A: compaction characteristics and physical properties of compacted cement stabilised soils. Mater. Struct. 44, 681–693 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Souad Amel Bourokba Mrabent
    • 1
  • Ramzy Djelloul
    • 1
  • Abdelkader Hachichi
    • 1
  • Jean Marie Fleureau
    • 2
  1. 1.Laboratoire Matériaux Sol et Thermique (LMST)University of Sciences and Technology Mohamed Boudiaf OranBir El DjirAlgeria
  2. 2.Laboratoire MSS-Mat, CentraleSupélec & CNRS UMR 8579Châtenay-MalabryFrance

Personalised recommendations