Skip to main content

3D Printing in Neurosurgery

  • Chapter
  • First Online:
3D Printing in Medicine

Abstract

3D printing is generating interest in many fields, for example, design, engineering, and medicine. The surgical fields in medicine have taken the lead in progress, especially in orthopedics, maxillofacial reconstruction, and neurosurgery (Eltorai et al. 2015; Yang et al. 2015; Mavili et al. 2007; Müller et al. 2003; McGurk et al. 1997). In particular, 3D printing has contributed greatly to the development of personalized medicine. 3D printing has emerged to play a unique role in the fabrication of personalized implants as well as in surgical planning and simulation, assisting in the consent process, and providing an educational tool for medical students and residents (Mavili et al. 2007; Müller et al. 2003; McGurk et al. 1997; Liew et al. 2015; Jones et al. 2016; Naftulin et al. 2015; Rengier et al. 2010; Webb 2000). This is based on the fact that reasonably complex 3D-printed models can be created in a short period of time with a good cost efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Caro-Osorio E, De la Garza-Ramos R, Martínez-Sánchez SR, Olazarán-Salinas F. Cranioplasty with polymethylmethacrylate prostheses fabricated by hand using original bone flaps: technical note and surgical outcomes. Surg Neurol Int. 2013;4:136.

    Article  PubMed  PubMed Central  Google Scholar 

  • Christensen A, Rybicki FJ. Maintaining safety and efficacy for 3D printing in medicine. 3D Print Med. 2017;3:1.

    Article  Google Scholar 

  • D’Urso PS, Earwaker WJ, Barker TM, Redmond MJ, Thompson RG, Effeney DJ, Tomlinson FH. Custom cranioplasty using stereolithography and acrylic. Br J Plast Surg. 2000;53(3):200–4.

    Article  PubMed  Google Scholar 

  • Dean D, Min KJ, Bond A. Computer aided design of large-format prefabricated cranial plates. J Craniofac Surg. 2003;14(6):819–32.

    Article  PubMed  Google Scholar 

  • Eltorai AE, Nguyen E, Daniels AH. Three-dimensional printing in orthopedic surgery. Orthopedics. 2015;38(11):684–7.

    Article  PubMed  Google Scholar 

  • Fathi AR, Marbacher S, Lukes A. Cost-effective patient-specific intraoperative molded cranioplasty. J Craniofac Surg. 2008;19(3):777–81.

    Article  PubMed  Google Scholar 

  • Gateno J, Teichgraeber JF, Xia JJ. Three-dimensional surgical planning for maxillary and midface distraction osteogenesis. J Craniofac Surg. 2003;14(6):833–9.

    Article  PubMed  Google Scholar 

  • Gooch MR, Gin GE, Kenning TJ, German JW. Complications of cranioplasty following decompressive craniectomy: analysis of 62 cases. Neurosurg Focus. 2009;26(6):e9.

    Article  PubMed  Google Scholar 

  • Grossman N, Shemesh-Jan HS, Merkin V, Gideon M, Cohen A. Deep-freeze preservation of cranial bones for future cranioplasty: nine years of experience in Soroka University Medical Center. Cell Tissue Bank. 2007;8(3):243–6.

    Article  CAS  PubMed  Google Scholar 

  • Ionita CN, Mokin M, Varble N, Bednarek DR, Xiang J, Snyder KV, Siddiqui AH, Levy EI, Meng H, Rudin S. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing. Proc SPIE Int Soc Opt Eng. 2014;9038:90380M.

    PubMed  PubMed Central  Google Scholar 

  • Iwama T, Yamada J, Imai S, Shinoda J, Funakoshi T, Sakai N. The use of frozen autogenous bone flaps in delayed cranioplasty revisited. Neurosurgery. 2003;52(3):591–6. discussion 595–6.

    Article  PubMed  Google Scholar 

  • Jones DB, Sung R, Weinberg C, Korelitz T, Andrews R. Three-dimensional modeling may improve surgical education and clinical practice. Surg Innov. 2016;23(2):189–95.

    Article  PubMed  Google Scholar 

  • Klammert U, Gbureck U, Vorndran E, Rödiger J, Meyer-Marcotty P. Kübler AC.3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects. J Craniomaxillofac Surg. 2010;38(8):565–70.

    Article  PubMed  Google Scholar 

  • Kondo K, Harada N, Masuda H, Sugo N, Terazono S, Okonogi S, Sakaeyama Y, Fuchinoue Y, Ando S, Fukushima D, Nomoto J, Nemoto M. A neurosurgical simulation of skull base tumors using a 3D printed rapid prototyping model containing mesh structures. Acta Neurochir. 2016;158:1213.

    Article  PubMed  Google Scholar 

  • Kozakiewicz M, Elgalal M, Loba P, Komuński P, Arkuszewski P, Broniarczyk-Loba A, Stefańczyk L. Clinical application of 3D pre-bent titanium implants for orbital floor fractures. J Craniomaxillofac Surg. 2009;37(4):229–34.

    Article  PubMed  Google Scholar 

  • Li J, Li P, Lu H, Shen L, Tian W, Long J, Tang W. Digital design and individually fabricated titanium implants for the reconstruction of traumatic zygomatico-orbital defects. J Craniofac Surg. 2013;24(2):363–8.

    Article  CAS  PubMed  Google Scholar 

  • Liew Y, Beveridge E, Demetriades AK, Hughes MA. 3D printing of patient-specific anatomy: a tool to improve patient consent and enhance imaging interpretation by trainees. Br J Neurosurg. 2015;29(5):712–4. doi:10.3109/02688697.2015.1026799.

    Article  PubMed  Google Scholar 

  • Marbacher S, Andereggen L, Erhardt S, Fathi AR, Fandino J, Raabe A, Beck J. Intraoperative template-molded bone flap reconstruction for patient-specific cranioplasty. Neurosurg Rev. 2012;35(4):527–35.

    Article  PubMed  Google Scholar 

  • Martelli N, Serrano C, van den Brink H, Pineau J, Prognon P, Borget I, El Batti S. Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review. Surgery. 2016;159:1485.

    Article  PubMed  Google Scholar 

  • Mavili ME, Canter HI, Saglam-Aydinatay B, Kamaci S, Kocadereli I. Use of three-dimensional medical modeling methods for precise planning of orthognathic surgery. J Craniofac Surg. 2007;18(4):740–7.

    Article  PubMed  Google Scholar 

  • McGurk M, Amis AA, Potamianos P, Goodger NM. Rapid prototyping techniques for anatomical modelling in medicine. Ann R Coll Surg Engl. 1997;79(3):169–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller A, Krishnan KG, Uhl E, Mast G. The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg. 2003;14(6):899–914.

    Article  PubMed  Google Scholar 

  • Naftulin JS, Kimchi EY, Cash SS. Streamlined, inexpensive 3D printing of the brain and skull. PLoS One. 2015;10(8):e0136198.

    Article  PubMed  PubMed Central  Google Scholar 

  • Narayanan V, Narayanan P, Rajagopalan R, Karuppiah R, Rahman ZA, Wormald PJ, Van Hasselt CA, Waran V. Endoscopic skull base training using 3D printed models with pre-existing pathology. Eur Arch Otorhinolaryngol. 2015;272(3):753–7.

    Article  PubMed  Google Scholar 

  • Oyama K, Ditzel Filho LF, Muto J, de Souza DG, Gun R, Otto BA, Carrau RL, Prevedello DM. Endoscopic endonasal cranial base surgery simulation using an artificial cranial base model created by selective laser sintering. Neurosurg Rev. 2015;38(1):171–178. discussion 178. doi:10.1007/s10143-014-0580-4.

    Article  PubMed  Google Scholar 

  • Pacione D, Tanweer O, Berman P, Harter DH. The utility of a multimaterial 3D printed model for surgical planning of complex deformity of the skull base and craniovertebral junction. J Neurosurg. 2016;125:1194.

    Article  PubMed  Google Scholar 

  • Ploch CC, Mansi CS, Jayamohan J, Kuhl E. Using 3D printing to create personalized brain models for neurosurgical training and preoperative planning. World Neurosurg. 2016;90:668. doi:10.1016/j.wneu.2016.02.081. pii: S1878-8750(16)00326-0.

    Article  PubMed  Google Scholar 

  • Poukens J, Haex J, Riediger D. The use of rapid prototyping in the preoperative planning of distraction osteogenesis of the cranio-maxillofacial skeleton. Comput Aided Surg. 2003;8(3):146–54.

    Article  PubMed  Google Scholar 

  • Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335–41.

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal G, Ng I, Moscovici S, Lee KK, Lay T, Martin C, Manley GT. Polyetheretherketone implants for the repair of large cranial defects: a 3-center experience. Neurosurgery. 2014;75(5):523–9.

    Article  PubMed  Google Scholar 

  • Rotaru H, Stan H, Florian IS, Schumacher R, Park YT, Kim SG, Chezan H, Balc N, Baciut M. Cranioplasty with custom-made implants: analyzing the cases of 10 patients. J Oral Maxillofac Surg. 2012;70(2):e169–76.

    Article  PubMed  Google Scholar 

  • Ryan JR, Almefty K, Nakaji P, Frakes DH. Cerebral aneurysm clipping surgery simulation using patient-specific 3D printing and silicone casting. World Neurosurg. 2016;88:175. doi:10.1016/j.wneu.2015.12.102. pii: S1878-8750(16)00112-1.

    Article  PubMed  Google Scholar 

  • Shah AM, Jung H, Skirboll S. Materials used in cranioplasty: a history and analysis. Neurosurg Focus. 2014;36(4):E19.

    Article  PubMed  Google Scholar 

  • Shoakazemi A, Flannery T, McConnell RS. Long-term outcome of subcutaneously preserved autologous cranioplasty. Neurosurgery. 2009;65(3):505–10.

    Article  PubMed  Google Scholar 

  • Solaro P, Pierangeli E, Pizzoni C, Boffi P, Scalese G. From computerized tomography data processing to rapid manufacturing of custom-made prostheses for cranioplasty. Case report. J Neurosurg Sci. 2008;52(4):113–6. discussion 116.

    CAS  PubMed  Google Scholar 

  • Tai BL, Rooney D, Stephenson F, Liao PS, Sagher O, Shih AJ, Savastano LE. Development of a 3D-printed external ventricular drain placement simulator: technical note. J Neurosurg. 2015;123(4):1070–6.

    Article  PubMed  Google Scholar 

  • Thawani JP, Pisapia JM, Singh N, Petrov D, Schuster JM, Hurst RW, Zager EL, Pukenas BA. 3D-printed modeling of an arteriovenous malformation including blood flow. World Neurosurg. 2016;90:675. pii: S1878-8750(16)30022-5.

    Article  PubMed  Google Scholar 

  • Waran V, Menon R, Pancharatnam D, Rathinam AK, Balakrishnan YK, Tung TS, Raman R, Prepageran N, Chandran H, Rahman ZA. The creation and verification of cranial models using three-dimensional rapid prototyping technology in field of transnasal sphenoid endoscopy. Am J Rhinol Allergy. 2012;26(5):e132.

    Article  PubMed  Google Scholar 

  • Waran V, Narayanan V, Karuppiah R, Owen SL, Aziz T. Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. J Neurosurg. 2014a;120(2):489–92.

    Article  PubMed  Google Scholar 

  • Waran V, Narayanan V, Karuppiah R, Pancharatnam D, Chandran H, Raman R, Rahman ZA, Owen SL, Aziz TZ. Injecting realism in surgical training-initial simulation experience with custom 3D models. J Surg Educ. 2014b;71(2):193–7.

    Article  PubMed  Google Scholar 

  • Waran V, Narayanan V, Karuppiah R, Thambynayagam HC, Muthusamy KA, Rahman ZA, Kirollos RW. Neurosurgical endoscopic training via a realistic 3-dimensional model with pathology. Simul Healthc. 2015;10(1):43–8.

    Article  PubMed  Google Scholar 

  • Webb PA. A review of rapid prototyping (RP) techniques in the medical and biomedical sector. J Med Eng Technol. 2000;24(4):149–53.

    Article  CAS  PubMed  Google Scholar 

  • Winder J, Cooke RS, Gray J, Fannin T, Fegan T. Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. J Med Eng Technol. 1999;23(1):26–8.

    Article  CAS  PubMed  Google Scholar 

  • Wurm G, Lehner M, Tomancok B, Kleiser R, Nussbaumer K. Cerebrovascular biomodeling for aneurysm surgery: simulation-based training by means of rapid prototyping technologies. Surg Innov. 2011;18(3):294–306.

    Article  PubMed  Google Scholar 

  • Yang M, Li C, Li Y, Zhao Y, Wei X, Zhang G, Fan J, Ni H, Chen Z, Bai Y, Li M. Application of 3D rapid prototyping technology in posterior corrective surgery for Lenke 1 adolescent idiopathic scoliosis patients. Medicine (Baltimore). 2015;94(8):e582.

    Article  Google Scholar 

  • Zhang Z, Zhang R, Song Z. Skull defect reconstruction based on a new hybrid level set. Biomed Mater Eng. 2014;24(6):3343–51.

    PubMed  Google Scholar 

  • Zheng YX, Yu DF, Zhao JG, Wu YL, Zheng B. 3D printout models vs. 3D-rendered images: which is better for preoperative planning? J Surg Educ. 2016;73(3):518–23.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicknes Waran F.R.C.S. (Neurosurg) .

Editor information

Editors and Affiliations

6.1 Electronic Supplementary Material

Navigated craniotomy for cerebral glioma (WMV 38,037 kb)

Navigated endoscopic third ventriculostomy and pineal biopsy (MP4 34,179 kb)

Anterior and posterior decompression of cervical spine with instrumentation (MP4 121,781 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Waran, V., Narayanan, V., Karrupiah, R., Cham, C.Y. (2017). 3D Printing in Neurosurgery. In: Rybicki, F., Grant, G. (eds) 3D Printing in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-61924-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61924-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61922-4

  • Online ISBN: 978-3-319-61924-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics