Skip to main content

An Energy Aware Cost Recovery Approach for Virtual Machine Migration

  • Conference paper
  • First Online:
Economics of Grids, Clouds, Systems, and Services (GECON 2016)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 10382))

Abstract

Datacenters provide an IT backbone for today’s business and economy, and are the principal electricity consumers for Cloud computing. Various studies suggest that approximately 30% of the running servers in US datacenters are idle and the others are under-utilized, making it possible to save energy and money by using Virtual Machine (VM) consolidation to reduce the number of hosts in use. However, consolidation involves migrations that can be expensive in terms of energy consumption, and sometimes it will be more energy efficient not to consolidate. This paper investigates how migration decisions can be made such that the energy costs involved with the migration are recovered, as only when costs of migration have been recovered will energy start to be saved. We demonstrate through a number of experiments, using the Google workload traces for 12,583 hosts and 1,083,309 tasks, how different VM allocation heuristics, combined with different approaches to migration, will impact on energy efficiency. We suggest, using reasonable assumptions for datacenter setup, that a combination of energy-aware fill-up VM allocation and energy-aware migration, and migration only for relatively long running VMs, provides for optimal energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garg, S.K., Buyya, R.: Green cloud computing and environmental sustainability. Harnessing Green IT: Principles and Practices, pp. 315–340 (2012)

    Google Scholar 

  2. NRDC. America’s Data Centers Are Wasting Huge Amounts of Energy: critical action needed to save billions of dollars and kilowatts. IB:14-08-A, pp. 1–6 (2014)

    Google Scholar 

  3. Zeadally, S., Khan, S.U., Chilamkurti, N.: Energy-efficient networking: past, present, and future. J. Supercomput. 62(3), 1093–1118 (2012)

    Article  Google Scholar 

  4. Meisner, D., Gold, B.T., Wenisch, T.F.: Powernap: eliminating server idle power. ACM Sigplan Not. 44, 205–216 (2009)

    Article  Google Scholar 

  5. https://www.youtube.com/watch?v=7MwxA4Fj2l4. Accessed 3 Oct 2015

  6. Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A., et al.: A taxonomy and survey of energy-efficient data centers and cloud computing systems. Adv. Comput. 82(2), 47–111 (2011)

    Article  Google Scholar 

  7. Ferreto, T.C., Netto, M.A.S., Calheiros, R.N., De Rose, C.A.F.: Server consolidation with migration control for virtualized data centers. Future Gener. Comput. Syst. 27(8), 1027–1034 (2011)

    Article  Google Scholar 

  8. Reiss, C., Tumanov, A., Ganger, G.R.: Towards understanding heterogeneous clouds at scale: Google trace analysis. \(\ldots \) Center for Cloud \(\ldots \) (2012)

    Google Scholar 

  9. Reiss, C., Wilkes, J., Hellerstein, J.L: Google cluster-usage traces: format+ schema. Google Inc., Mountain View, CA, USA, Technical report (2011)

    Google Scholar 

  10. do Lago, D.G., Madeira, E.R.M., Bittencourt, L.F.: Power-aware virtual machine scheduling on clouds using active cooling control and DVFS. In: Proceedings of the 9th International Workshop on Middleware for Grids, Clouds and e-Science, pp. 2:1–2:6 (2011)

    Google Scholar 

  11. Beloglazov, A., Buyya, R.: Managing overloaded hosts for dynamic consolidation of virtual machines in cloud data centers under quality of service constraints. IEEE Trans. Parallel Distrib. Syst. 24(7), 1366–1379 (2013)

    Article  Google Scholar 

  12. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Experience 41(1), 23–50 (2011)

    Article  Google Scholar 

  13. Stewart, C., Shen, K.: Some joules are more precious than others: managing renewable energy in the datacenter. In: Proceedings of the Workshop on Power Aware Computing and Systems, pp. 15–19. IEEE (2009)

    Google Scholar 

  14. Fan, X., Weber, W.-D., Barroso, L.A.: Power provisioning for a warehouse-sized computer. ACM SIGARCH Comput. Architect. News 35, 13–23 (2007). ACM

    Article  Google Scholar 

  15. Khanna, G., Beaty, K., Kar, G., Kochut, A.: Application performance management in virtualized server environments. In: 2006 IEEEIFIP Network Operations and Management Symposium NOMS 2006, vol. 20(D), pp. 373–381 (2006)

    Google Scholar 

  16. Speitkamp, B., Bichler, M.: A mathematical programming approach for server consolidation problems in virtualized data centers. IEEE Trans. Serv. Comput. 3(4), 266–278 (2010)

    Article  Google Scholar 

  17. Liu, H., Jin, H., Xu, C.-Z., Liao, X.: Performance and energy modeling for live migration of virtual machines. Cluster Comput. 16(2), 249–264 (2011)

    Article  Google Scholar 

  18. Luiz André Barroso and Urs Hölzle: The case for energy-proportional computing. Computer 40(12), 33–37 (2007)

    Article  Google Scholar 

  19. Akoush, S., Sohan, R., Rice, A., Moore, A.W., Hopper, A.: Predicting the performance of virtual machine migration. In: 2010 IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, pp. 37–46. IEEE (2010)

    Google Scholar 

  20. Strunk, A., Dargie, W.: Does live migration of virtual machines cost energy? In: 2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), pp. 514–521 (2013)

    Google Scholar 

  21. Google-cluster-data. https://groups.google.com/. Accessed 7 May 16

  22. Lange, K.-D.: Identifying shades of green: the specpower benchmarks. IEEE Comput. 42(3), 95–97 (2009)

    Article  Google Scholar 

  23. Belady, C., Rawson, A., Pfleuger, J., Cader, T.: Green Grid Data Center Power Efficiency Metrics: PUE and DCIE (2008)

    Google Scholar 

  24. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Sandpiper: black-box and gray-box resource management for virtual machines. Comput. Netw. 53(17), 2923–2938 (2009)

    Article  MATH  Google Scholar 

  25. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for managing SLA violations. In: 10th IFIP/IEEE International Symposium on Integrated Network Management 2007, IM 2007, pp. 119–128 (2007)

    Google Scholar 

  26. Beloglazov, A., Buyya, R.: Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers. In: Proceedings of the 8th International Workshop on Middleware for Grids, Clouds and e-Science, December 2010, p. 6 (2011)

    Google Scholar 

  27. Dabbagh, M., Hamdaoui, B., Guizani, M., Rayes, A.: Efficient datacenter resource utilization through cloud resource overcommitment. In: 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 330–335. IEEE (2015)

    Google Scholar 

  28. Andreolini, M., Casolari, S., Colajanni, M., Messori, M.: Dynamic load management of virtual machines in cloud architectures. In: Avresky, D.R., Diaz, M., Bode, A., Ciciani, B., Dekel, E. (eds.) CloudComp 2009. LNICSSTE, vol. 34, pp. 201–214. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12636-9_14

    Chapter  Google Scholar 

  29. Zhang, X., Shae, Z.-Y., Zheng, S., Jamjoom, H.: Virtual machine migration in an over-committed cloud. In: 2012 IEEE Network Operations and Management Symposium, pp. 196–203. IEEE (2012)

    Google Scholar 

  30. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.: Large-scale cluster management at Google with Borg. In: Proceedings of the Tenth European Conference on Computer Systems - EuroSys 2015, pp. 1–17 (2015)

    Google Scholar 

  31. Mehta, S., Neogi, A.: ReCon: a tool to recommend dynamic server consolidation in multi-cluster data centers. In: IEEE/IFIP Network Operations and Management Symposium: Pervasive Management for Ubiquitous Networks and Services, NOMS 2008, pp. 363–370 (2008)

    Google Scholar 

  32. Verma, A., Ahuja, P., Neogi, A.: pMapper: power and migration cost aware application placement in virtualized systems. In: Issarny, V., Schantz, R. (eds.) Middleware 2008. LNCS, vol. 5346, pp. 243–264. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89856-6_13

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by Department of Computer Science, University of Surrey, UK and Abdul Wali Khan University, Mardan, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zakarya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zakarya, M., Gillam, L. (2017). An Energy Aware Cost Recovery Approach for Virtual Machine Migration. In: Bañares, J., Tserpes, K., Altmann, J. (eds) Economics of Grids, Clouds, Systems, and Services. GECON 2016. Lecture Notes in Computer Science(), vol 10382. Springer, Cham. https://doi.org/10.1007/978-3-319-61920-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61920-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61919-4

  • Online ISBN: 978-3-319-61920-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics