Advertisement

A Posteriori Error Estimation for the Non-associated Plasticity Drucker-Prager Model with Hardening

  • Dao Duy LamEmail author
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)

Abstract

The numerical solution of non-associated elastoplasticity is still a key aspect of research and development in computational plasticity. Approximate solution procedures are based, in the context of a displacement method, on a weak form of the equilibrium and reply upon two main ingredients: the numerical integration of the rate constitutive relations over a generic time step (local stage) and the iterative algorithm exploited to solve the nonlinear equilibrium equations (global stage). The fully discrete problem is the obtained by performing a spatial discretization of the field equations and a time-integration of the evolution rule. The interest is here given to the discretization errors, which are caused by the numerical discretization of the continuous mathematical model in order to define an adaptive strategy.

The aim of this paper is to extend the concept of error in the constitutive equations to non-associated plasticity Drucker-Prager model to handle non-associative rate-independent plasticity problems solved by employing the incremental displacement conforming finite element method.

Numerical examples by PLSAER2D (a Matlab program) for both the associated and the non-associated cases for Drucker-Prager model with hardening are also presented.

Keywords

Non-associated plasticity Drucker-Prager model Hardening Error estimation 

References

  1. 1.
    Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. John Wiley & Son and B G Teubner, Chichester (2000)CrossRefGoogle Scholar
  2. 2.
    Halphen, B., Nguyen, Q.S.: Sur les matériaux standards généralisés. J. Méc. 14, 39–63 (1975)Google Scholar
  3. 3.
    Babuska, I., Rheinboldt, W.C.: A posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12, 1597–1615 (1978)CrossRefGoogle Scholar
  4. 4.
    Drucker, D.C.: On the postulate of stability of material in the mechanics of continua. J. Méc. 3(2), 235–249 (1964)Google Scholar
  5. 5.
    Lam, D.D.: A posteriori error estimation for non-associated plasticity problems, Ph. D. thesis, INSA de Rennes (2009)Google Scholar
  6. 6.
    Lam, D.D.: A bi-potential update algorithm for the non-associated plasticity model with hardening. In: Proceedings of CIGOS-2015: Innovations in Construction, Paris, France (2015)Google Scholar
  7. 7.
    de Saxcé, G.: Une généralisation de l’inégalité de Fenchel et ses applications aux lois constitutives. Comptes Rendus de l’Académie des Sciences de Paris (1992)Google Scholar
  8. 8.
    Hjiaj, M.: Sur la classe des matériaux standard implicites: Concept, Aspects discrétisés et Estimation de l’erreur a posteriori. Ph. D. thesis, Polytechnic Faculty of Mons. (1999)Google Scholar
  9. 9.
    Hjiaj, M., Lam, D.D., de Saxcé, G.: A family of bi-potentials describing the non-associated flow rule of pressure-dependant plastic models. Acta Mech. 220, 237–246 (2011)CrossRefGoogle Scholar
  10. 10.
    Ladevèze, P., Maunder, E.A.W.: A general procedure for recovering equilibrating element tractions. Comput. Methods Appl. Mech. Eng. 137, 111–151 (1996)CrossRefGoogle Scholar
  11. 11.
    Ladevèze, P., Moës, N., Douchin, B.: Constitutive relation error estimators for (visco) plastic finite element analysis with softening. Comput. Methods Appl. Mech. Eng. 176, 247–264 (1999)CrossRefGoogle Scholar
  12. 12.
    Ladevèze, P., Moës, N.: A new a posteriori error estimation for nonlinear time dependent finite element analysis. Comput. Methods Appl. Mech. Eng. 157, 45–68 (1997)CrossRefGoogle Scholar
  13. 13.
    Ladevèze, P., Pelle, J.P.: Mastering Calculations in Linear and Nonlinear Mechanics. Springer, New York (2004)Google Scholar
  14. 14.
    Ladevèze, P., Passieux, J.-C., Néron, D.: The LATIN multiscale computational method and the proper generalized decomposition. Comput. Methods Appl. Mech. Eng. 199, 1287–1296 (2009)CrossRefGoogle Scholar
  15. 15.
    Maunder, E.A.W., Moitinho de Almeida, J.P.: The stability of stars of triangular equilibrium plate elements. Int. J. Numer. Methods Eng. 77, 922–968 (2009)CrossRefGoogle Scholar
  16. 16.
    Moreau, J.: Evolution problem associated with a moving convex set in a hilbert space. J. Diff. Equ. 26, 347–374 (1977)CrossRefGoogle Scholar
  17. 17.
    Orlando, A., Peri´c, D.: Analysis of transfer procedures in elastoplasticity based on the error in the constitutive equations: Theory and numerical illustration. Int. J. Numer. Methods Eng. 60, 1595–1631 (2004)CrossRefGoogle Scholar
  18. 18.
    Simo, J.C., Hughes, T.J.: Computational Inelasticity. Springer, New York (2000)Google Scholar
  19. 19.
    Zienkiewicz, O.C., Liu, Y.C., Huang, G.C.: Error estimation and adaptivity in flow formulation for forming problems. Int. J. Numer. Methods Eng. 25, 23–42 (1988)CrossRefGoogle Scholar
  20. 20.
    MATLAB Release: The MathWorks, Inc., Natick, Massachusetts, United States (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of Transport and CommunicationsHanoiVietnam

Personalised recommendations