Skip to main content

Tools for the Discovery of Hyperaccumulator Plant Species and Understanding Their Ecophysiology

Part of the Mineral Resource Reviews book series (MIRERE)

Abstract

Globally the discovery of hyperaccumulator plants has been hindered by systematic screening of plant species, and is highly biased towards Ni hyperaccumulators. This is mainly due to the existence of a reagent paper test that is only specific to nickel (based on dimethylglyoxime) such that more than 400 of the approximately 500 known hyperaccumulators species are for Ni. New technical advances now permit massive screening of herbarium specimens using non-destructive, portable X-Ray Fluorescence Spectroscopy (XRF), an approach that has already led to the discovery of numerous hyperaccumulator species new to science. The elemental distribution in selected hyperaccumulator plant tissues can then be further studied using techniques such as desktop or synchrotron micro-XRF, nuclear microprobe (PIXE), scanning/transmission electron microscopy with energy-dispersive spectroscopy (SEM/TEM-EDS), secondary ion mass spectrometry (SIMS) or laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS). The use of histochemical dyes combined with light microscopy further aids in the identification of anatomical and structural features of the studied plant tissues.

Keywords

  • Hyperaccumulator Plants
  • Hyperaccumulator Species
  • Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)
  • Secondary Ion Mass Spectrometry (SIMS)
  • Herbarium Specimens

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-61899-9_7
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-61899-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Agrawal B, Czymmek KJ, Sparks DL, Bais HP (2013) Transient influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale. J Biol Chem 5288:7351–7362

    CrossRef  Google Scholar 

  • Alexander EB, DuShey J (2011) Topographic and soil differences from peridotite to serpentinite. Geomorphology 135:271–276

    CrossRef  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    CrossRef  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology, and phytochemistry. Biorecovery 1:81–126

    Google Scholar 

  • Barker NP, Weston PH, Rutschmann F, Sauquet H (2007) Molecular dating of the ‘Gondwanan’ plant family Proteaceae is only partially congruent with the timing of the break-up of Gondwana. J Biogeogr 34:2012–2027

    CrossRef  Google Scholar 

  • Bartish IV, Swenson U, Munzinger J, Anderberg A (2005) Phylogenetic relationships among New Caledonian Sapotaceae (Ericales): molecular evidence for generic polyphyly and repeated dispersal. Am J Bot 92:667–673

    CrossRef  Google Scholar 

  • Bhatia NP, Walsh KB, Orlic I, Siegele R, Ashwath N, Baker AJM (2004) Studies on spatial distribution of nickel in leaves and stems of the metal hyperaccumulator Stackhousia tryonii Bailey using nuclear microprobe (micro-PIXE) and EDXS techniques. Funct Plant Biol 31:1061–1074

    CrossRef  Google Scholar 

  • Brundrett MC, Enstone DE, Peterson CA (1988) A berberine-aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant tissues. Protoplasma 146:133–142

    CrossRef  Google Scholar 

  • Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56:765–775

    CrossRef  Google Scholar 

  • Danscher G (1984) Autometallography: a new technique for light and electron microscopic visualization of metals in biological tissues (gold, silver, metal sulphides and metal selenides). Histochemistry 81:331–335

    CrossRef  Google Scholar 

  • Dé Rue C, Gibouin D, Demarty M, Verdus M-C, Lefebvre F, Thellier M, Ripoll C (2006) Dynamic-SIMS imaging and quantification of inorganic ions in Frozen-hydrated plant samples. Microsc Res Tech 69:53–63

    CrossRef  Google Scholar 

  • Donner E, Punshon T, Guerinot M, Lombi E (2012) Functional characterisation of metal(loid) processes in planta through the integration of synchrotron techniques and plant molecular biology. Anal Bioanal Chem 402:3287–3298

    CrossRef  Google Scholar 

  • Echevarria G (2017) Genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In: van der Ent A, Echevarria G, Morel JL (eds) Agromining: farming for metals. Springer

    Google Scholar 

  • Eticha D, Stass A, Horst J (2005) Localization of aluminium in the maize root apex: can morin detect cell wall-bound aluminium? J Exp Bot 56:1351–1357

    CrossRef  Google Scholar 

  • Fernando DR, Guymer G, Reeves RD, Woodrow IE, Baker AJM, Batianoff GN (2009) Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for ‘new’ Mn hyperaccumulators and potential applications in taxonomy. Ann Bot 103:931–939

    CrossRef  Google Scholar 

  • Gao W, Nan T, Tan G, Zhao H, Tan W, Meng F, Li Z, Li QX, Wang B (2015) Cellular and subcellular immunohistochemical localization and quantification of cadmium ions in wheat (Triticum aestivum). PLoS One 10:e0123779–e0123716. doi:10.1371/journal.pone.0123779

    CrossRef  Google Scholar 

  • Grandcolas P, Murienne J, Robillard T, Desutter-Grandcolas L, Jourdan H, Guilbert E, Deharveng L (2008) New Caledonia: a very old Darwinian island? Philos Trans R Soc Lond B 363:3309–3317

    CrossRef  Google Scholar 

  • Graves WS, Bessuille J, Brown P, Carbajo S, Dolgashev V, Hong KH, Ihloff E, Khaykovich B, Lin H, Murari K, Nanni EA, Resta G, Tantawi S, Zapata LE, Kärtner FX, Moncton DE (2014) Compact X-ray source based on burst-mode inverse Compton scattering at 100 kHz. Phys Rev ST Accel Beams 17:120701

    CrossRef  Google Scholar 

  • Guerra MBB, de Almeida E, Carvalho GGA, Souza PF, Nunes LC, Júnior DS, Krug FJ (2014) Comparison of analytical performance of benchtop and handheld energy dispersive X-ray fluorescence systems for the direct analysis of plant materials. J Anal At Spectrom 29:1667–1674

    CrossRef  Google Scholar 

  • Heads M (2010) The endemic plant families and the palms of New Caledonia: a biogeographical analysis. J Biogeogr 37:1239–1250

    CrossRef  Google Scholar 

  • Hemberg O, Otendal M, Hertz HM (2003) Liquid-metal-jet anode electron-impact X-ray source. Appl Phys Lett 83:1483. doi:10.1063/1.1602157

    CrossRef  Google Scholar 

  • Hoppe P, Cohen S, Meibom A (2013) NanoSIMS: technical aspects and applications in cosmochemistry and biological geochemistry. Geostand Geoanal Res 37:111–154

    CrossRef  Google Scholar 

  • Hu P-J, Qiu R-L, Senthilkumar P, Jiang D, Chen Z-W, Tang Y-T, Liu F-J (2009) Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ Exp Bot 66:317–325

    CrossRef  Google Scholar 

  • Hu P-J, Gan Y-Y, Tang Y-T, Zhang Q-F, Jiang D, Yao N, Qiu R-L (2012) Cellular tolerance, accumulation and distribution of cadmium in leaves of hyperaccumulator Picris divaricata. Pedosphere 22:497–507

    CrossRef  Google Scholar 

  • Huguet S, Bert V, Laboudigue A, Barthès V, Isaure M-P, Llorens I, Schat H, Sarret G (2012) Cd speciation and localization in the hyperaccumulator Arabidopsis halleri. Environ Exp Bot 82:54–65

    CrossRef  Google Scholar 

  • Ingle RA, Fricker MD, Smith JAC (2008) Evidence for nickel/proton antiport activity at the tonoplast of the hyperaccumulator plant Alyssum lesbiacum. Plant Biol 10:746–753

    CrossRef  Google Scholar 

  • Isnard S, L’Huillier L, Rigault F, Jaffré T (2016) How did the ultramafic soils shape the flora of the New Caledonian hotspot? Plant Soil 403–2:53–76

    CrossRef  Google Scholar 

  • Jaffré T (1993) The relationship between ecological diversity and floristic diversity in New Caledonia. Biodivers Lett 1:82–87

    CrossRef  Google Scholar 

  • Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193:579–580

    CrossRef  Google Scholar 

  • Jaffré T, Brooks RR, Trow JM (1979a) Hyperaccumulation of nickel by Geissois species. Plant Soil 51:157–161

    CrossRef  Google Scholar 

  • Jaffré T, Kersten W, Brooks RR, Reeves RD (1979b) Nickel uptake by Flacourtiaceae of New Caledonia. Proc R Soc Lond B Biol Sci 205:385–394

    CrossRef  Google Scholar 

  • Jaffré T, Pillon Y, Thomine S, Merlot S (2013) The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front Plant Sci 4:279. doi:10.3389/fpls.2013.00279

    CrossRef  Google Scholar 

  • Johansson SAE, Campbell JL, Malmqvist KG (eds) (1995) Particle-Induced X-Ray Emission Spectrometry (PIXE). Wiley, Chichester

    Google Scholar 

  • Kelly PC, Brooks RR, Dilli S, Jaffré T (1975) Preliminary observations on the ecology and plant chemistry of some nickel-accumulating plants from New Caledonia. Proc R Soc Lond B Biol Sci 189:69–80

    CrossRef  Google Scholar 

  • Kersten W, Brooks RR, Reeves RD, Jaffré T (1979) Nickel uptake by New Caledonian species of Phyllanthus. Taxon 28:529–534

    CrossRef  Google Scholar 

  • Kirkham R, Dunn PA, Kuczewski AJ, Siddons DP, Dodanwela R, Moorhead GF, Ryan CG, De Geronimo G, Beuttenmuller R, Pinelli D, Pfeffer M, Davey P, Jensen M, Paterson DJ, de Jonge MD, Howard DL, Küsel M, McKinlay J (2010) The Maia spectroscopy detector system: engineering for integrated pulse capture, Low-Latency Scanning and Real-Time Processing. AIP Conf Proc 1234:240–243

    CrossRef  Google Scholar 

  • Koosaletse-Mswela P, Przybyłowicz WJ, Cloete KJ, Barnabas AD, Torto N, Mesjasz-Przybyłowicz J (2015) Quantitative mapping of elemental distribution in leaves of the metallophytes Helichrysum candolleanum, Blepharis aspera, and Blepharis diversispina from Selkirk Cu-Ni mine, Botswana. Nucl Instr Meth Phys Res B 363:188–193

    CrossRef  Google Scholar 

  • Kozhevnikova AD, Seregin IV, Erlikh NT, Shevyreva TA, Andreev IM, Verweij R, Schat H (2014) Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens. New Phytol 203:508–519

    CrossRef  Google Scholar 

  • Kozhevnikova AD, Seregin IV, Gosti F, Schat H (2016) Zinc accumulation and distribution over tissues in Noccaea caerulescens in nature and in hydroponics: a comparison. Plant Soil 411(1):5–16

    Google Scholar 

  • L’Huillier L, Edighoffer S (1996) Extractability of nickel and its concentration in cultivated plants in Ni rich ultramafic soils of New Caledonia. Plant Soil 186:255–264

    CrossRef  Google Scholar 

  • Ladiges PY, Udovicic F, Nelson G (2003) Australian biogeographic connections and the phylogeny of large genera in the plant family Myrtaceae. J Biogeogr 30:989–998

    CrossRef  Google Scholar 

  • Lu LL, Tian SK, Yang XE, Wang XC, Brown P, Li TQ, He ZL (2008) Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213

    CrossRef  Google Scholar 

  • Macnair MR, Smirnoff N (1999) Use of zincon to study uptake and accumulation of zinc by zinc tolerant and hyperaccumulating plants. Commun Soil Sci Plant Anal 30:1127–1136

    CrossRef  Google Scholar 

  • Mandò PA, Przybyłowicz WJ (2009) Particle-Induced X-ray Emission (PIXE). In: Meyers RA (ed) Encyclopedia of Analytical Chemistry. Wiley, Chichester

    Google Scholar 

  • Markowicz AA (2008) Quantification and correction procedures. In: Potts PJ, West M (eds) Portable X-ray fluorescence spectrometry capabilities for in situ analysis. Royal Society of Chemistry, Cambridge, Cambridge

    Google Scholar 

  • McLaren TI, Guppy CN, Tighe MK (2012) Rapid and nondestructive plant nutrient analysis using portable X-ray fluorescence. Soil Sci Soc Am J 76:1446–1453

    CrossRef  Google Scholar 

  • McRae R, Bagchi P, Sumalekshmy S, Fahrni CJ (2009) In situ imaging of metals in cells and tissues. Chem Rev 109:4780–4827

    CrossRef  Google Scholar 

  • Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2002) Micro-PIXE in plant sciences: present status and perspectives. Nucl Instr Meth Phys Res B 189(1):470–481

    CrossRef  Google Scholar 

  • Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2011) PIXE and metal hyperaccumulation: from soil to plants and insects. X-Ray Spectrom 40(3):181–185

    CrossRef  Google Scholar 

  • Mesjasz-Przybyłowicz J, Balkwill K, Przybylowicz WJ, Annegarn HJ (1994) Proton microprobe and X-ray fluorescence investigations of nickel distribution in serpentine flora from South Africa. Nucl Instr Meth Phys Res B 89:208–212

    CrossRef  Google Scholar 

  • Mesjasz-Przybylowicz J, Przybylowicz W, Barnabas A, van der Ent A (2016) Extreme nickel hyperaccumulation in the vascular tracts of the tree Phyllanthus balgooyi from Borneo. New Phytol 209:1513–1526

    CrossRef  Google Scholar 

  • Miller LM, Dumas P (2006) Chemical imaging of biological tissue with synchrotron infrared light. Biochim Biophys Acta 1758:846–857

    CrossRef  Google Scholar 

  • Mittermeier RA, Robles Gil P, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, da Fonseca GAB (2004) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico City

    Google Scholar 

  • Mizuno N, Nosaka S, Mizuno T, Horie K, Obata H (2003) Distribution of Ni and Zn in the leaves of Thlaspi japonicum growing on ultramafic soil. Soil Sci Plant Nutr 49:93–97

    CrossRef  Google Scholar 

  • Moore KL, Schroder M, Wu Z, Martin BGH, Hawes CR, McGrath SP, Hawkesford MJ, Feng Ma J, Zhao FJ, Grovenor CRM (2011) High-resolution secondary ion mass spectrometry reveals the contrasting subcellular distribution of arsenic and silicon in rice roots. Plant Physiol 156:913–924

    CrossRef  Google Scholar 

  • Moradi AB, Oswald SE, Nordmeyer-Massner JA, Pruessmann KP, Robinson BH, Schulin R (2010a) Analysis of nickel concentration profiles around the roots of the hyperaccumulator plant Berkheya coddii using MRI and numerical simulations. Plant Soil 328:291–302

    Google Scholar 

  • Moradi AB, Swoboda S, Robinson B, Prohaska T, Kaestner A, Oswald SE, Wenzel WW, Schulin R (2010b) Mapping of nickel in root cross-sections of the hyperaccumulator plant Berkheya coddii using laser ablation ICP-MS. Environ Exp Bot 69:24–31

    CrossRef  Google Scholar 

  • Morat P (1993) Our knowledge of the flora of New Caledonia: endemism and diversity in relation to vegetation types and substrates. Biodivers Lett 1:72–81

    CrossRef  Google Scholar 

  • Morat P, Jaffré T, Veillon J-M (2001) The flora of New Caledonia’s calcareous substrates. Adansonia 23:109–127

    Google Scholar 

  • Morat P, Jaffré T, Tronchet F, Munzinger J, Pillon Y, Veillon J-M, Chalopin M (2012) The taxonomic database « FLORICAL » and characteristics of the indigenous flora of New Caledonia. Adansonia sér 3(34):177–219

    Google Scholar 

  • Murienne J (2009) Testing biodiversity hypotheses in New Caledonia using phylogenetics. J Biogeogr 36:1433–1434

    CrossRef  Google Scholar 

  • Murienne J, Grandcolas P, Piulachs MD, Bellés X, D'Haese C, Legendre F, Pellens R, Guilbert E (2005) Evolution on a shaky piece of Gondwana: is local endemism recent in New Caledonia? Cladistics 21:2–7

    CrossRef  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots from conservation priorities. Nature 403:853–858

    CrossRef  Google Scholar 

  • Pallon J, Ryan CG, Arteaga MN, Elfman M, Kristiansson P, Nilsson EJC, Nilsson C (2009) STIM evaluation in GeoPIXE to complement the quantitative dynamic analysis. Nucl Instr Meth Phys Res B 267:2080–2084

    CrossRef  Google Scholar 

  • Paterson D, de Jonge MD, Howard DL, Lewis W, McKinlay J, Starritt A, Kusel M, Ryan CG, Kirkham R, Moorhead G, Siddons DP (2011) The X-ray fluorescence microscopy beamline at the Australian Synchrotron. AIP Conf Proc 1365(1):219–222

    CrossRef  Google Scholar 

  • Pelletier B (2006) Geology of the New Caledonia region and its implications for the study of the New Caledonian biodiversity. In: Payri C, Richer de Forges B (eds) Compendium of marine species from New Caledonia. Centre IRD de Nouméa, Nouméa

    Google Scholar 

  • Pillon Y (2012) Time and tempo of diversification in the flora of New Caledonia. Bot J Linn Soc 170:288–298

    CrossRef  Google Scholar 

  • Pillon Y, Munzinger J, Amir H, Lebrun M (2010) Ultramafic soils and species sorting in the flora of New Caledonia. J Ecol 98:1108–1116

    CrossRef  Google Scholar 

  • Pillon Y, Hopkins HCF, Rigault F, Jaffré T, Stacy EA (2014) Cryptic adaptive radiation in tropical forest trees in New Caledonia. New Phytol 202:521–530

    CrossRef  Google Scholar 

  • Przybylowicz WJ, Mesjasz-Przybylowicz J, Prozesky VM, Pineda CA (1997) Botanical applications in nuclear microscopy. Nucl Instr Meth Phys Res B 130:335–345

    CrossRef  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazaín R (1996) Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133:217–224

    CrossRef  Google Scholar 

  • Reeves RD, Baker AJM, Becquer T, Echevarria G, Miranda ZJG (2007) The flora and biogeochemistry of the ultramafic soils of Goiás state, Brazil. Plant Soil 293:107–119

    CrossRef  Google Scholar 

  • Reidinger S, Ramsey M, Hartley S (2012) Rapid and accurate analyzes of silicon and phosphorus in plants using a portable X-ray fluorescence spectrometer. New Phytol 195:699–706

    CrossRef  Google Scholar 

  • Ryan CG, Siddons DP, Kirkham R, Dunn PA, Kuczewski A, Moorhead G, De Geronimo G, Paterson DJ, de Jonge MD, Hough RM, Lintern MJ, Howard DL, Kappen P, Cleverley J (2010) The new Maia detector system: methods for high definition trace element imaging of natural material. AIP Conf Proc 1221:9–17

    CrossRef  Google Scholar 

  • Ryan CG, Siddons DP, Kirkham R, Li ZY, Jonge MD, Paterson DJ, Kuczewski A, Howard DL, Dunn PA, Falkenberg G, Boesenberg U, Geronimo GD, Fisher LA, Halfpenny A, Lintern MJ, Lombi E, Dyl KA, Jensen M, Moorhead GF, Cleverley JS, Hough RM, Godel B, Barnes SJ, James SA, Spiers KM, Alfeld M, Wellenreuther G, Vukmanovic Z, Borg S (2014) Maia X-ray fluorescence imaging: capturing detail in complex natural samples. J Phys Conf Ser 499(1):012002

    CrossRef  Google Scholar 

  • Sarret G, Pilon Smits EAH, Castillo Michel H, Isaure MP, Zhao FJ, Tappero R (2013) Use of synchrotron-based techniques to elucidate metal uptake and metabolism in plants. Adv Agron 119:1–82

    CrossRef  Google Scholar 

  • Setoguchi H, Osawa TA, Pintaud JC, Jaffré T, Veillon JM (1998) Phylogenetic relationships within Araucariaceae based on rbcL gene sequences. Am J Bot 85:1507–1516

    CrossRef  Google Scholar 

  • Sinclair SA, Sherson SM, Jarvis R, Camakaris J, Cobbett CS (2007) The use of the zinc-fluorophore, Zinpyr-1, in the study of zinc homeostasis in Arabidopsis roots. New Phytol 174:39–45

    CrossRef  Google Scholar 

  • Smart KE, Kilburn MR, Salter CJ, Smith JAC, Grovenor CRM (2007) NanoSIMS and EPMA analysis of nickel localisation in leaves of the hyperaccumulator plant Alyssum lesbiacum. Int J Mass Spectrom 260:107–114

    CrossRef  Google Scholar 

  • Smart KE, Smith JAC, Kilburn MR, Martin BGH, Hawes C, Grovenor CRM (2010) High-resolution elemental localization in vacuolate plant cells by nanoscale secondary ion mass spectrometry. Plant J 63(5):870–879

    CrossRef  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy-resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    CrossRef  Google Scholar 

  • Swenson U, Munzinger J (2010) Taxonomic revision of Pycnandra subgenus Trouettia (Sapotaceae), with six new species from New Caledonia. Austral Syst Bot 23:333–370

    CrossRef  Google Scholar 

  • Swenson U, Backlund A, McLoughlin S, Hill RS (2001) Nothofagus biogeography revisited with special emphasis on the enigmatic distribution of subgenus Brassospora in New Caledonia. Cladistics 17:28–47

    CrossRef  Google Scholar 

  • Tian S, Lu L, Labavitch J, Yang X, He Z, Hu H, Sarangi R, Newville M, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol 157:1914–1925

    CrossRef  Google Scholar 

  • Tylko G, Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2007a) X-ray microanalysis of biological material in the frozen-hydrated state by PIXE. Microsc Res Tech 70:55–68

    CrossRef  Google Scholar 

  • Tylko G, Mesjasz-Przybylowicz J, Przybylowicz WJ (2007b) In-vacuum micro-PIXE analysis of biological specimens in frozen-hydrated state. Nucl Instr Meth Phys Res B 260:141–148

    CrossRef  Google Scholar 

  • van der Ent A, Reeves RD (2015) Foliar metal accumulation in plants from copper-rich ultramafic outcrops: case studies from Malaysia and Brazil. Plant Soil 389:401–418

    CrossRef  Google Scholar 

  • van der Ent A, Jaffré T, L'Huillier L, Gibson N, Reeves RD (2015a) The flora of ultramafic soils in the Australia–Pacific region: state of knowledge and research priorities. Aust J Bot 63:173–190

    CrossRef  Google Scholar 

  • van der Ent A, Rajakaruna N, Boyd R, Echevarria G, Repin R, Williams D (2015b) Global research on ultramafic (serpentine) ecosystems (8th International Conference on Serpentine Ecology in Sabah, Malaysia). Aust J Bot 63:1–6

    Google Scholar 

  • van der Ent A, Callahan DL, Noller BN, Mesjasz-Przybylowicz J, Przybylowicz WJ, Barnabas A, Harris HH (2017) Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Sci Rep 7:41861. doi:10.1038/srep41861

    CrossRef  Google Scholar 

  • Vavpetič P, Pelicon P, Vogel-Mikuš K, Grlj N, Pongrac P, Jeromel L, Ogrinc N, Regvar M (2013) Micro-PIXE on thin plant tissue samples in frozen hydrated state: A novel addition to JSI nuclear microprobe. Nucl Instr Meth Phys Res B 306:140–143

    CrossRef  Google Scholar 

  • Vijayan P, Willick IR, Lahlali R, Karunakaran C, Tanino KK (2015) Synchrotron radiation sheds fresh light on plant research: the use of powerful techniques to probe structure and composition of plants. Plant Cell Physiol 56:1252–1263

    CrossRef  Google Scholar 

  • Wang YD, Mesjasz-Przybylowicz J, Tylko G, Barnabas AD, Przybylowicz WJ (2013) Micro-PIXE analyzes of frozen-hydrated semi-thick biological sections. Nucl Instr Meth Phys Res B 306:134–139

    CrossRef  Google Scholar 

  • Watson RE, Perlman ML (1978) Seeing with a new light: synchrotron radiation. Science 199:1295–1302

    CrossRef  Google Scholar 

  • Wu B, Zoriy M, Chen Y, Becker JS (2009) Imaging of nutrient elements in the leaves of Elsholtzia splendens by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Talanta 78:132–137

    CrossRef  Google Scholar 

  • Zhao F-J, Moore KL, Lombi E, Zhu Y-G (2014) Imaging element distribution and speciation in plant cells. Trends Plant Sci 19:183–192

    CrossRef  Google Scholar 

Download references

Acknowledgements

V. Gei is the recipient of an Australia Awards PhD Scholarship from the Australian Federal Government. We thank Sandrine Isnard and Tanguy Jaffré from the Institut de Recherche pour le Développement in New Caledonia for supporting the herbarium XRF scanning at the IRD Herbarium (NOU). Parts of the research reported here were undertaken using the X-Ray Fluorescence Microscopy beamline of the Australian Synchrotron, and at the Centre for Microscopy and Microanalysis at The University of Queensland. We thank Bruker Pty Ltd for analysis of the freeze-dried plant leaves shown in Fig. 5. A. van der Ent is the recipient of a Discovery Early Career Researcher Award (DE160100429) from the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony van der Ent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Gei, V. et al. (2018). Tools for the Discovery of Hyperaccumulator Plant Species and Understanding Their Ecophysiology. In: Van der Ent, A., Echevarria, G., Baker, A., Morel, J. (eds) Agromining: Farming for Metals. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-61899-9_7

Download citation