Skip to main content

Processing of Bio-ore to Products

  • Chapter
  • First Online:
Agromining: Farming for Metals

Part of the book series: Mineral Resource Reviews ((MIRERE))

Abstract

Hyperaccumulator plants may contain valuable metals at concentrations comparable to those of conventional metal ore and can be significantly upgraded by incineration. There is an incentive to recover these metals as products to partially counter-balance the cost of disposing the contaminated biomass from contaminated soils, mine tailings, and processing wastes. Metal recovery is included in the agromining chain, which has been developed over the past two decades for Ni and Au. More than 450 Ni-hyperaccumulator species are currently known and some grow quickly providing a high farming yield. Nickel recovery involves an extraction step, ashing and/or leaching of the dry biomass, followed by a refining step using pyro- or hydrometallurgy. The final products are ferronickel, Ni metal, Ni salts or Ni catalysts, all being widely used in various industrial sectors and in everyday life. Gold can be recovered from mine tailings using a number of plant species, typically aided by a timed addition of an Au-chelating extractant to the soil. Dry biomass is ashed and smelted. This approach enables the treatment of resources that could not be effectively processed using conventional methods. In addition to nickel and gold, the recovery of other metals or elements (e.g. Cd, Zn, Mn, REEs) has been investigated. Further effort is required to improve process efficiency and to discover new options tailored to the unique characteristics of hyperaccumulator plant biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson CWN, Brooks RR, Stewart RB, Simcock R (1998) Harvesting a crop of gold in plants. Nature 395:553–554

    Article  Google Scholar 

  • Anderson CWN, Brooks RR, Chiarucci A, LaCoste CJ, Leblanc M, Robinson BH, Simcock R, Stewart RB (1999) Phytomining for nickel, thallium and gold. J Geochem Explor 67:407–415

    Article  Google Scholar 

  • Anderson C, Moreno F, Meech J (2005) A field demonstration of gold phytoextraction technology. Miner Eng 18:385–392

    Article  Google Scholar 

  • Angle JS, Chaney RL, Baker AJM, Li Y, Reeves R, Volk V, Roseberg R, Brewer E, Burke S, Nelkin J (2001) Developing commercial phytoextraction technologies: practical considerations. S Afr J Sci 97:619–623

    Google Scholar 

  • Bani A, Echevarria G, Mullaj A, Reeves R, Morel JL, Sulçe S (2009) Nickel hyperaccumulation by Brassicaceae in serpentine soils of Albania and northwestern Greece. Northeast Nat 16:385–404

    Article  Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel JL (2015) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediation 17:117–127

    Article  Google Scholar 

  • Barbaroux R (2010) Développement d’un procédé hydrométallurgique de récupération du nickel à partir de la plante hyperaccumulatrice Alyssum murale. Dissertation, Institut National de la Recherche Scientifique Eau, Terre, Environnement et Institut National Polytechnique de Lorraine. Université de Québec - Université de Lorraine, Québec (Canada) - Nancy (France)

    Google Scholar 

  • Barbaroux R, Meunier N, Mercier G, Taillard V, Morel JL, Simonnot M-O, Blais JF (2009) Chemical leaching of nickel from the seeds of the metal hyperaccumulator plant Alyssum murale. Hydrometallurgy 100:10–14

    Article  Google Scholar 

  • Barbaroux R, Mercier G, Blais JF, Morel JL, Simonnot M-O (2011) A new method for obtaining nickel metal from the hyperaccumulator plant Alyssum murale. Sep Purif Technol 83:57–65

    Article  Google Scholar 

  • Barbaroux R, Plasari E, Mercier G, Simonnot M-O, Morel JL, Blais JF (2012) A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale. Sci Total Environ 423:111–119

    Article  Google Scholar 

  • Boominathan R, Saha-Chaudhury NM, Sahajwalla V, Doran PM (2004) Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining. Biotechnol Bioeng 86:243–250

    Article  Google Scholar 

  • Caron M (1924) Process for recovering values from nickel and nickel-cobalt ores. US Patent 1,487,145, 1924

    Google Scholar 

  • Chaney RL, Angle JS, Baker AJM, Li YM (1998) Method for phytomining of nickel, cobalt and other metals from soil. US Patent 5,711,784, 27 Jan 1998

    Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1433

    Article  Google Scholar 

  • Crundwell F, Moats MS, Ramachandran V (2011) Extractive metallurgy of nickel, cobalt and platinum group metals. Elsevier, Amsterdam

    Google Scholar 

  • Delplanque M, Collet S, Del Gratta F, Schnuriger B, Gaucher R, Robinson B, Bert V (2013) Combustion of Salix used for phytoextraction: the fate of metals and viability of the processes. Biomass Bioenerg 49:160–170

    Article  Google Scholar 

  • Dodson JR, Hunt AJ, Parker HL, Yang Y, Clark JH (2012) Elemental sustainability: towards the total recovery of scarce metals. Chem Eng Process 51:69–78

    Article  Google Scholar 

  • Escande V, Olszewski TK, Petit E, Grison C (2014a) Biosourced polymetallic catalysts: an efficient means to synthesize underexploited platform molecules from carbohydrates. Chem Sus Chem 7:1915–1923

    Article  Google Scholar 

  • Escande V, Olszewski TK, Grison C (2014b) Preparation of ecological catalysts derived from Zn hyperaccumulating plants and their catalytic activity in Diels–Alder reaction. C R Chimie 17:731–737

    Article  Google Scholar 

  • Escande V, Petit E, Garoux L, Boulanger C, Grison C (2015) Switchable alkene epoxidation/oxidative cleavage with H2O2/NaHCO3: efficient heterogeneous catalysis derived from biosourced eco-Mn. ACS Sustain Chem Eng 3:2704–2715

    Article  Google Scholar 

  • Fittock JE (1997) QNI Limited cobalt refinery: process development, installation and operation. In: Cooper WC and Mihaylov I(eds). Proceedings of 36th conference of metallurgists of CIM, Nickel-Cobalt 97, Vol 1 Hydrometallurgy and refining of nickel and cobalt, pp 329–338

    Google Scholar 

  • Gleeson S, Butt C, Elias M (2003) Nickel laterites: a review. Soc Econ Geol Newslett 54:1–16.

    Google Scholar 

  • Grison C, Escande V, Petit E, Garoux L, Boulanger C, Grison C (2013) Psychotria douarrei and Geissois pruinosa, novel resources for the plant-based catalytic chemistry. RSC Adv 3:22340–22345

    Article  Google Scholar 

  • Hayes PC (2003) Process principles in minerals and materials production. Hayes Publishing, Brisbane, QLD

    Google Scholar 

  • Hazotte C, Laubie B, Rees F, Morel JL, Simonnot M-O (2017) An innovative process for the recovery of cadmium and zinc from Noccea caerulescens. Hydrometallurgy (submitted)

    Google Scholar 

  • Hellman PL (2001) Mineralogical and geochemical studies—key elements in evaluating nickel laterites. In: ALTA conference Ni/Co proceedings

    Google Scholar 

  • Houzelot V, Laubie L, Pontvianne S, Simonnot M-O (2017) Effect of up-scaling on the quality of ashes obtained from hyperaccumulator biomass to recover Ni by agromining. Chem Eng Res Des 120:26–33

    Article  Google Scholar 

  • Keller C, Ludwig C, Davoli F, Wochele J (2005) Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction. Environ Sci Technol 39:3359–3367

    Article  Google Scholar 

  • Koppolu L, Clements LD (2003) Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part 1: Preparation of synthetic hyperaccumulator biomass. Biomass Bioenerg 24:69–79

    Article  Google Scholar 

  • Koppolu L, Prasad R, Clements LD (2004) Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part III: Pilot-scale pyrolysis of synthetic hyperaccumulator biomass. Biomass Bioenerg 26:463–472

    Article  Google Scholar 

  • Krisnayanti DB, Anderson WC, Sukartono S, Afandi Y, Suheri H, Ekawanti A (2016) Phytomining for artisanal gold mine tailings management. Minerals 6:84. doi:10.3390/min6030084

    Article  Google Scholar 

  • Lamb AE, Anderson CWN, Haverkamp RG (2001) The extraction of gold from plants and its application to phytomining. Chem New Zealand 9:31–33

    Google Scholar 

  • Le Clercq M, Adschiri T, Arai K (2001) Hydrothermal processing of nickel containing biomining or bioremediation biomass. Biomass Bioenerg 21:73–80

    Article  Google Scholar 

  • Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker AJM, Reeves R, Nelkin J (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    Article  Google Scholar 

  • Littlejohn P, Vaughan J (2012) Selectivity of commercial and novel mixed functionality cation exchange resins in mildly acidic sulfate and mixed sulfate–chloride solution. Hydrometallurgy 121–124:90–99

    Article  Google Scholar 

  • Losfeld G, Escande V, Jaffré T, L’Huillier L, Grison C (2012a) The chemical exploitation of nickel phytoextraction: an environmental, ecologic and economic opportunity for New Caledonia. Chemosphere 89:907–910

    Article  Google Scholar 

  • Losfeld G, Escande V, Vidal de La Blache P, L’Huillier L, Grison C (2012b) Design and performance of supported Lewis acid catalysts derived from metal contaminated biomass for Friedel–Crafts alkylation and acylation. Catal Today 189:111–116

    Article  Google Scholar 

  • Morel JL (2013) Using plants to “micro-mine” metals. http://www.inra.fr/en/Scientists-Students/Biomass/All-the-news/Using-plants-to-micro-mine-metals

  • Mudd GM, Jowitt SM (2014) A detailed assessment of global nickel resource trends and endowments. Econ Geol 109:1813–1841

    Article  Google Scholar 

  • Nkrumah PN, Baker AJM, Chaney RL, Erskine PD, Echevarria G, Morel JL, van der Ent A (2016) Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant Soil 406:55–69

    Article  Google Scholar 

  • O’Callaghan J (2003) Process improvements at Bulong Operations Pty Ltd. In: Proceedings of the ALTA Nickel/Cobalt conference, Perth

    Google Scholar 

  • Parker HL, Rylott EL, Hunt AJ, Dodson JR, Taylor AF, Bruce NC, Clark JH (2014) Supported palladium nanoparticles synthesized by living plants as a catalyst for Suzuki-Miyaura reactions. PLoS One 9:e87192

    Article  Google Scholar 

  • Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997a) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126

    Article  Google Scholar 

  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V (1997b) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86

    Article  Google Scholar 

  • Rodrigues J, Houzelot V, Ferrari F, Echevarria G, Laubie B, Morel JL, Simonnot M-O, Pons MN (2016) Life cycle assessment of agromining chain highlights role of erosion control and bioenergy. J Clean Prod 139:770–778

    Article  Google Scholar 

  • Sas-Nowosielska A, Kucharski R, Małkowski E, Pogrzeba M, Kuperberg JM, Kryński K (2004) Phytoextraction crop disposal—an unsolved problem. Environ Pollut 128:373–379

    Article  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Miner Eng 22:1007–1019

    Article  Google Scholar 

  • Tang Y-T, Deng T-H-B WQ-H, Wang S-Z, Qiu R-L, Wei Z-B, Guo X-F, Wu Q-T, Lei M, Chen T-B, Echevarria G, Sterckeman T, Simonnot M-O, Morel JL (2012) Designing cropping systems for metal-contaminated sites: a review. Pedosphere 22:470–488

    Article  Google Scholar 

  • Taylor A (2013) Laterites – still a frontier of nickel process development. In: Battle P, Moats M, Cocalia V, Oosterhof H, Alam S, Allanore A, Jones RT, Stubina N, Anderson C, Wang S (eds) Ni–Co 2013. Wiley, New York. ISBN: 978-1-118-60575-2

    Google Scholar 

  • U.S. Geological Survey (2016) Mineral commodity summaries, Nickel. January 2016

    Google Scholar 

  • Van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, Echevarria G, Fogliani B, Qiu R, Mulligan DR (2015) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780

    Article  Google Scholar 

  • Vaughan J, Hawker W, Chen J, van der Ent A (2016a), The extractive metallurgy of agromined nickel. In: Proceedings of the International Minerals Processing Congress (IPMC), Québec City, Canada, 11–15 Sept 2016

    Google Scholar 

  • Vaughan J, Riggio J, Van der Ent A, Chen J, Peng H, Harris H (2016b) Characterisation and hydrometallurgical processing of nickel from tropical phytomined bio-ore. Hydrometallurgy 169:346–355

    Article  Google Scholar 

  • Wilson-Corral V, Anderson CWN, Rodriguez-Lopez M (2012) Gold phytomining: a review of the relevance of this technology to mineral extraction in the 21st Century. J Environ Manage 111:249–257

    Article  Google Scholar 

  • Yang JG, Yang JY, Peng CH, Tang CB, Zhou KC (2009a) Recovery of zinc from hyperaccumulator plants: Sedum plumbizincicola. Environ Technol 30:693–700

    Article  Google Scholar 

  • Yang JG, Peng CH, Tang CB, Tang MT, Zhou KC (2009b) Zinc removal from hyperaccumulator Sedum alfredii Hance biomass. Trans Nonferrous Met Soc China 19(5):1353–1359

    Article  Google Scholar 

  • Zhang X (2014) Procédé hydrométallurgique pour la valorisation du nickel contenu dans les plantes hyperaccumulatrices. Dissertation, Université de Lorraine, Nancy (France)

    Google Scholar 

  • Zhang X, Houzelot V, Bani A, Morel JL, Echevarria G, Simonnot M-O (2014) Selection and combustion of Ni-hyperaccumulators for the phytomining process. Int J Phytoremediation 16:1058–1072

    Article  Google Scholar 

  • Zhang X, Laubie B, Houzelot V, Plasari E, Echevarria G, Simonnot M-O (2016) Increasing purity of ammonium nickel sulfate hexahydrate and production sustainability in a nickel phytomining process. Chem Eng Res Des 106:26–32

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge and thank the many researchers who have contributed to knowledge in processing of agromined bio-ore. We also acknowledge financers, especially Institut Carnot ICEEL, BPI France, the French Agence Nationale de la Recherche (Agromine project www.agromine.org), and EU (FACCE–Surplus project Agronickel and Life Project Life-Agromine).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Odile Simonnot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simonnot, MO., Vaughan, J., Laubie, B. (2018). Processing of Bio-ore to Products. In: Van der Ent, A., Echevarria, G., Baker, A., Morel, J. (eds) Agromining: Farming for Metals. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-61899-9_3

Download citation

Publish with us

Policies and ethics