Skip to main content

Multimedia, Similarity, and Preferences: Adding Flexibility to Your Information Needs

  • Chapter
  • First Online:
A Comprehensive Guide Through the Italian Database Research Over the Last 25 Years

Part of the book series: Studies in Big Data ((SBD,volume 31))

  • 2058 Accesses

Abstract

Starting from the 90’s, it was easily recognized that commonly adopted search paradigms were not enough to deal with at-the-time emerging novel DB applications, in which the presence of multimedia data and high dimensionality were both key aspects. In this paper we survey the research activity of our group in the last 25 years, therefore going through issues such as indexing, approximate query processing, and support for preference queries, which are now quite well understood. In doing this we also consider the need to provide the users with simple but powerful tools, able to smooth the processes of query creation/customization and of result interpretation. We complete with a look to the novel issues that the “Big Data” era brings to us.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The (in-)famous “two tigers” example considers a user asking for an image containing two regions each representing a tiger: If a database image contains a single “tiger” region, it is not correct to match both query regions to the single “tiger” region of the database image, since, in this case, information on the number of query regions is lost.

  2. 2.

    Clearly, also SAMs can be used for k-nearest neighbor queries, provided they can index objects’ features.

References

  1. S. Ardizzoni, I. Bartolini, M. Patella, Windsurf: region-based image retrieval using wavelets, in IWOSS (Florence, Italy, 1999)

    Google Scholar 

  2. I. Bartolini, P. Ciaccia, MuSIQUE: a multi-system image querying user interface, in SEBD (Cetraro, Italy, 2003)

    Google Scholar 

  3. I. Bartolini, P. Ciaccia, Towards an effective semi-automatic technique for image annotation, in SEBD (Torre Canne, Italy, 2007)

    Google Scholar 

  4. I. Bartolini, P. Ciaccia, Imagination: exploiting link analysis for accurate image annotation, in AMR (Paris, France, 2007)

    Google Scholar 

  5. I. Bartolini, P. Ciaccia, Scenique: a multimodal image retrieval interface, in AVI (Naples, Italy, 2008)

    Google Scholar 

  6. I. Bartolini, P. Ciaccia, Multi-dimensional keyword-based image annotation and search, in KEYS (Indianapolis, IN, 2010)

    Google Scholar 

  7. I. Bartolini, P. Ciaccia, Automatically joining pictures to multiple taxonomies, in SEBD (Rimini, Italy, 2010)

    Google Scholar 

  8. I. Bartolini, M. Patella, Correct and efficient evaluation of region-based image search, in SEBD (L’Aquila, Italy, 2000)

    Google Scholar 

  9. I. Bartolini, M. Patella, A general framework for real-time analysis of massive multimedia streams (Submitted for publication, 2017)

    Google Scholar 

  10. I. Bartolini, P. Ciaccia, F. Waas, FeedbackBypass: a new approach to interactive similarity query processing, in VLDB (Rome, Italy, 2001)

    Google Scholar 

  11. I. Bartolini, P. Ciaccia, M. Patella, Distributed Aggregation Strategies for Preferences Queries, in SEBD (Portonovo, Italy, 2006)

    Google Scholar 

  12. I. Bartolini, P. Ciaccia, M. Patella, Adaptively browsing image databases with PIBE. MTAP 31(3), 269–286 (2006)

    Google Scholar 

  13. I. Bartolini, P. Ciaccia, V. Oria, M.T. Özsu, Flexible integration of multimedia sub-queries with qualitative preferences.MTAP 33(3), 275–300 (2007)

    Google Scholar 

  14. I. Bartolini, P. Ciaccia, M. Patella, Efficient sort-based skyline evaluation. ACM TODS 33(4), 1–45 (2008)

    Google Scholar 

  15. I. Bartolini, P. Ciaccia, M. Patella, Query processing issues in region-based image databases. KAIS 25(2), 389–420 (2010)

    Google Scholar 

  16. I. Bartolini, P. Ciaccia, M. Patella, Getting the best from uncertain data, in SEBD (Maratea, Italy, 2011)

    Google Scholar 

  17. I. Bartolini, Z. Zhang, D. Papadias, Collaborative filtering with personalized skylines. TKDE 23(2), 190–203 (2011)

    Google Scholar 

  18. I. Bartolini, P. Ciaccia, M. Patella, Getting the best from uncertain data: the correlated case, in SEBD (Venice, Italy, 2012)

    Google Scholar 

  19. I. Bartolini, M. Patella, G. Stromei, Efficiently managing multimedia hierarchical data with the windsurf library, in CCIS Series, vol. 314 (Springer, Berlin, 2012)

    Google Scholar 

  20. I. Bartolini, P. Ciaccia, M. Patella, The skyline of a probabilistic relation. IEEE TKDE 25(7), 1656–1669 (2013)

    Google Scholar 

  21. I. Bartolini, M. Patella, C. Romani, SHIATSU: tagging and retrieving videos without worries. MTAP 63(2), 357–385 (2013)

    Google Scholar 

  22. I. Bartolini, P. Ciaccia, M. Patella, Domination in the probabilistic world: computing skylines for arbitrary correlations and ranking semantics. ACM TODS 39(2), 14:1–14:45 (2014)

    Google Scholar 

  23. M. Batko, F. Falchi, et al., Building a web-scale image similarity search system. MTAP 47(3), 599–629 (2010)

    Google Scholar 

  24. S. Belongie, C. Carson, H. Greenspan, J. Malik, Color- and texture-based image segmentation using EM and its application to content-based image retrieval, in ICCV (Mumbai, India, 1998)

    Google Scholar 

  25. S. Börzsönyi, D. Kossmann, K. Stocker, The skyline operator, in ICDE (Heidelberg, Germany, 2001)

    Google Scholar 

  26. E. Chávez, G. Navarro, R. Baeza-Yates, J.L. Marroquín, Searching in metric spaces. ACM CSUR 33(3), 273–321 (2001)

    Google Scholar 

  27. J. Chen, C. Bouman, J. Dalton, Active browsing using similarity pyramids, in SPIE (San Jose, CA, 1999)

    Google Scholar 

  28. J. Chomicki, Querying with Intrinsic Preferences, in EDBT (Prague, Czech Republic, 2002)

    Google Scholar 

  29. J. Chomicki, P. Ciaccia, N. Meneghetti, Skyline queries, front and back SIGMOD Record 42(3), 6–18 (2013)

    Google Scholar 

  30. P. Ciaccia, M. Patella, PAC nearest neighbor queries: using the distance distribution for searching in high-dimensional metric spaces, in SEBD (Como, Italy, 1999)

    Google Scholar 

  31. P. Ciaccia, M. Patella, PAC nearest neighbor queries: approximate and controlled search in high-dimensional and metric spaces, in ICDE (San Diego, CA, 2000)

    Google Scholar 

  32. P. Ciaccia, M. Patella, Searching in metric spaces with user-defined and approximate distances. ACM TODS 27(4), 398–437 (2002)

    Google Scholar 

  33. P. Ciaccia, R. Torlone, Modeling the propagation of user preferences, in ER (Brussels, Belgium, 2011)

    Google Scholar 

  34. P. Ciaccia, M. Patella, F. Rabitti, P. Zezula, Indexing metric spaces with M-tree, in SEBD (Verona, Italy, 1997)

    Google Scholar 

  35. P. Ciaccia, M. Patella, P. Zezula, M-tree: an efficient access method for similarity search in metric spaces, in VLDB (Athens, Greece, 1997)

    Google Scholar 

  36. R. Datta, W. Ge, J. Li, J.Z. Wang, Toward bridging the annotation-retrieval gap in image search. IEEE Multimed. 14(3), 24–35 (2007)

    Google Scholar 

  37. R. Fagin, R. Guha et al., Multi-structural databases, in PODS (Baltimore, MD, 2005)

    Google Scholar 

  38. C. Faloutsos, R. Barber, et al., Efficient and effective querying by image content. JIIS 3(3/4), 231–262 (1994)

    Google Scholar 

  39. M. Flickner, H. Sawhney, et al., Query by image and video content: the QBIC system. IEEE Comput. 28(9), 23–32 (1995)

    Google Scholar 

  40. A. Graham, H. Garcia-Molina, A. Paepcke, T. Winograd, Time as essence for photo browsing through personal digital libraries, in JCDL (Portland, OR, 2002)

    Google Scholar 

  41. A. Guttman, R-Trees: a dynamic index structure for spatial searching, in SIGMOD (Boston, MA, 1984)

    Google Scholar 

  42. M. Hilbert, P. López, The world’s technological capacity to store, communicate, and compute information. Science 332(6025), 60–65 (2011)

    Google Scholar 

  43. A. Hinneburg, C.C. Aggarwal, D.A. Keim, What is the nearest neighbor in high dimensional spaces? in VLDB (Cairo, Egypt, 2000)

    Google Scholar 

  44. W. Hu, N. Xie, et al., A survey on visual content-based video indexing and retrieval. IEEE TSMC-C 41(6), 797–819 (2011)

    Google Scholar 

  45. W. Kießling, Foundations of preferences in database systems, in VLDB (Hong Kong, China, 2002)

    Google Scholar 

  46. J. Kleban, E. Moxley, J. Xu, B.S. Manjunath, Global annotation of geo-referenced photographs, in CIVR (Santorini, Greece, 2009)

    Google Scholar 

  47. J. Laaksonen, M. Koskela, S. Laakso, E. Oja, Self-organising maps as a relevance feedback technique in content-based image retrieval. PAA 2(4), 140–152 (2000)

    Google Scholar 

  48. J. Li, J.Z. Wang, Real-time computerized annotation of pictures, in MM (Santa Barbara, CA, 2006)

    Google Scholar 

  49. D.G. Lowe, Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Google Scholar 

  50. C.D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  51. O. Maron, A.L. Ratan, Multiple-instance learning for natural scene classification, in ICML (San Francisco, CA, 1998)

    Google Scholar 

  52. N. Meneghetti, D. Mindolin, P. Ciaccia, J. Chomicki, Output-sensitive evaluation of prioritized skyline queries, in SIGMOD (Melbourne, Australia, 2015)

    Google Scholar 

  53. D. Mitrović, M. Zeppelzauer, C. Breiteneder, Features for content-based audio retrieval. Adv. Comput. 78, 71–150 (2010)

    Google Scholar 

  54. P. Montanari, I. Bartolini et al., Looking for similar patterns in genomic sequences, in SEBD (Ugento, Italy, 2016)

    Google Scholar 

  55. P. Montanari, I. Bartolini, et al., Pattern similarity search in genomic sequences. TKDE 28(11), 3053–3067 (2016)

    Google Scholar 

  56. R. Navigli, Word sense disambiguation: a survey. ACM CSUR 41(2), 10 (2009)

    Google Scholar 

  57. M. Ortega, Y. Rui et al., Supporting similarity queries in MARS, in MM (Seattle, WA, 1997)

    Google Scholar 

  58. J.-Y. Pan, H. Yang, C. Faloutsos, P. Duygulu, Automatic multimedia cross-modal correlation discovery, in KDD (Seattle, WA, 2004)

    Google Scholar 

  59. M. Patella, P. Ciaccia, Approximate similarity search: a multi-faceted problem. JDA 7(1), 36–48 (2009)

    Google Scholar 

  60. A. Payne, S. Singh, A benchmark for indoor/outdoor scene classification, in ICAPR (Bath, UK, 2005)

    Google Scholar 

  61. A. Penta, A. Picariello, L. Tanca, Multimedia knowledge management using ontologies, in MS (Vancouver, BC, 2008)

    Google Scholar 

  62. A. Pentland, R.W. Picard, S. Sclaroff, Photobook: content-based manipulation of image databases. IJCV 18(3), 233–254 (1996)

    Google Scholar 

  63. Y. Rui, T.S. Huang, M. Ortega, S. Mehrotra, Relevance feedback: a power tool for interactive content-based image retrieval. IEEE TCSV 8(5), 644–655 1998

    Google Scholar 

  64. H. Samet, Foundations of Multidimensional and Metric Data Structures (Morgan Kaufmann, San Francisco, 2006)

    Google Scholar 

  65. S. Santini, R. Jain, Integrated browsing and querying for image databases. IEEE Multimed. 7(3), 26–39 (2000)

    Google Scholar 

  66. T. Seidl, H.-P. Kriegel, Efficient user adaptable similarity search in large multimedia databases, in VLDB (Athens, Greece, 1997)

    Google Scholar 

  67. A.W.M. Smeulders, M. Worring, et al., Content-based image retrieval at the end of the early years. IEEE TPAMI 22(12), 1349–1380 (2000)

    Google Scholar 

  68. M. Stricker, M. Orengo, Similarity of color images, in SPIE (San Jose, CA, 1995)

    Google Scholar 

  69. R. Torlone, P. Ciaccia, Finding the best when it’s a matter of preference, in SEBD (Portoferraio, Italy, 2002)

    Google Scholar 

  70. G. Trimponias, I. Bartolini, D. Papadias, D. Yang, Skyline processing on distributed vertical decompositions. IEEE TKDE 25(4), 850–862 (2013)

    Google Scholar 

  71. R. Tye, G. Nathaniel, N. Mor, Towards automatic extraction of event and place semantics from flickr tags, in SIGIR (Amsterdam, The Netherlands, 2007)

    Google Scholar 

  72. M. Wallace, K. Karpouzis, et al., The electronic road: personalized content browsing. IEEE Multimed. 10(3), 49–59 (2003)

    Google Scholar 

  73. L. Wang, L. Khan, Automatic image annotation and retrieval using weighted feature selection. MTAP 29(1), 55–71 (2006)

    Google Scholar 

  74. A. Yoshitaka, T. Ichikawa, A survey on content-based retrieval for multimedia databases. IEEE TKDE 11(1), 81–93 (1999)

    Google Scholar 

  75. P. Zezula, G. Amato, V. Dohnal, M. Batko, Similarity Search: The Metric Space Approach (Springer, Berlin, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Bartolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bartolini, I., Ciaccia, P., Patella, M. (2018). Multimedia, Similarity, and Preferences: Adding Flexibility to Your Information Needs. In: Flesca, S., Greco, S., Masciari, E., Saccà, D. (eds) A Comprehensive Guide Through the Italian Database Research Over the Last 25 Years. Studies in Big Data, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-61893-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61893-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61892-0

  • Online ISBN: 978-3-319-61893-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics