Multimedia, Similarity, and Preferences: Adding Flexibility to Your Information Needs

  • Ilaria BartoliniEmail author
  • Paolo Ciaccia
  • Marco Patella
Part of the Studies in Big Data book series (SBD, volume 31)


Starting from the 90’s, it was easily recognized that commonly adopted search paradigms were not enough to deal with at-the-time emerging novel DB applications, in which the presence of multimedia data and high dimensionality were both key aspects. In this paper we survey the research activity of our group in the last 25 years, therefore going through issues such as indexing, approximate query processing, and support for preference queries, which are now quite well understood. In doing this we also consider the need to provide the users with simple but powerful tools, able to smooth the processes of query creation/customization and of result interpretation. We complete with a look to the novel issues that the “Big Data” era brings to us.


Range Query Relevance Feedback Skyline Query Query Object CBIR System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Ardizzoni, I. Bartolini, M. Patella, Windsurf: region-based image retrieval using wavelets, in IWOSS (Florence, Italy, 1999)Google Scholar
  2. 2.
    I. Bartolini, P. Ciaccia, MuSIQUE: a multi-system image querying user interface, in SEBD (Cetraro, Italy, 2003)Google Scholar
  3. 3.
    I. Bartolini, P. Ciaccia, Towards an effective semi-automatic technique for image annotation, in SEBD (Torre Canne, Italy, 2007)Google Scholar
  4. 4.
    I. Bartolini, P. Ciaccia, Imagination: exploiting link analysis for accurate image annotation, in AMR (Paris, France, 2007)Google Scholar
  5. 5.
    I. Bartolini, P. Ciaccia, Scenique: a multimodal image retrieval interface, in AVI (Naples, Italy, 2008)Google Scholar
  6. 6.
    I. Bartolini, P. Ciaccia, Multi-dimensional keyword-based image annotation and search, in KEYS (Indianapolis, IN, 2010)Google Scholar
  7. 7.
    I. Bartolini, P. Ciaccia, Automatically joining pictures to multiple taxonomies, in SEBD (Rimini, Italy, 2010)Google Scholar
  8. 8.
    I. Bartolini, M. Patella, Correct and efficient evaluation of region-based image search, in SEBD (L’Aquila, Italy, 2000)Google Scholar
  9. 9.
    I. Bartolini, M. Patella, A general framework for real-time analysis of massive multimedia streams (Submitted for publication, 2017)Google Scholar
  10. 10.
    I. Bartolini, P. Ciaccia, F. Waas, FeedbackBypass: a new approach to interactive similarity query processing, in VLDB (Rome, Italy, 2001)Google Scholar
  11. 11.
    I. Bartolini, P. Ciaccia, M. Patella, Distributed Aggregation Strategies for Preferences Queries, in SEBD (Portonovo, Italy, 2006)Google Scholar
  12. 12.
    I. Bartolini, P. Ciaccia, M. Patella, Adaptively browsing image databases with PIBE. MTAP 31(3), 269–286 (2006)Google Scholar
  13. 13.
    I. Bartolini, P. Ciaccia, V. Oria, M.T. Özsu, Flexible integration of multimedia sub-queries with qualitative preferences.MTAP 33(3), 275–300 (2007)Google Scholar
  14. 14.
    I. Bartolini, P. Ciaccia, M. Patella, Efficient sort-based skyline evaluation. ACM TODS 33(4), 1–45 (2008)Google Scholar
  15. 15.
    I. Bartolini, P. Ciaccia, M. Patella, Query processing issues in region-based image databases. KAIS 25(2), 389–420 (2010)Google Scholar
  16. 16.
    I. Bartolini, P. Ciaccia, M. Patella, Getting the best from uncertain data, in SEBD (Maratea, Italy, 2011)Google Scholar
  17. 17.
    I. Bartolini, Z. Zhang, D. Papadias, Collaborative filtering with personalized skylines. TKDE 23(2), 190–203 (2011)Google Scholar
  18. 18.
    I. Bartolini, P. Ciaccia, M. Patella, Getting the best from uncertain data: the correlated case, in SEBD (Venice, Italy, 2012)Google Scholar
  19. 19.
    I. Bartolini, M. Patella, G. Stromei, Efficiently managing multimedia hierarchical data with the windsurf library, in CCIS Series, vol. 314 (Springer, Berlin, 2012)Google Scholar
  20. 20.
    I. Bartolini, P. Ciaccia, M. Patella, The skyline of a probabilistic relation. IEEE TKDE 25(7), 1656–1669 (2013)Google Scholar
  21. 21.
    I. Bartolini, M. Patella, C. Romani, SHIATSU: tagging and retrieving videos without worries. MTAP 63(2), 357–385 (2013)Google Scholar
  22. 22.
    I. Bartolini, P. Ciaccia, M. Patella, Domination in the probabilistic world: computing skylines for arbitrary correlations and ranking semantics. ACM TODS 39(2), 14:1–14:45 (2014)Google Scholar
  23. 23.
    M. Batko, F. Falchi, et al., Building a web-scale image similarity search system. MTAP 47(3), 599–629 (2010)Google Scholar
  24. 24.
    S. Belongie, C. Carson, H. Greenspan, J. Malik, Color- and texture-based image segmentation using EM and its application to content-based image retrieval, in ICCV (Mumbai, India, 1998)Google Scholar
  25. 25.
    S. Börzsönyi, D. Kossmann, K. Stocker, The skyline operator, in ICDE (Heidelberg, Germany, 2001)Google Scholar
  26. 26.
    E. Chávez, G. Navarro, R. Baeza-Yates, J.L. Marroquín, Searching in metric spaces. ACM CSUR 33(3), 273–321 (2001)Google Scholar
  27. 27.
    J. Chen, C. Bouman, J. Dalton, Active browsing using similarity pyramids, in SPIE (San Jose, CA, 1999)Google Scholar
  28. 28.
    J. Chomicki, Querying with Intrinsic Preferences, in EDBT (Prague, Czech Republic, 2002)Google Scholar
  29. 29.
    J. Chomicki, P. Ciaccia, N. Meneghetti, Skyline queries, front and back SIGMOD Record 42(3), 6–18 (2013)Google Scholar
  30. 30.
    P. Ciaccia, M. Patella, PAC nearest neighbor queries: using the distance distribution for searching in high-dimensional metric spaces, in SEBD (Como, Italy, 1999)Google Scholar
  31. 31.
    P. Ciaccia, M. Patella, PAC nearest neighbor queries: approximate and controlled search in high-dimensional and metric spaces, in ICDE (San Diego, CA, 2000)Google Scholar
  32. 32.
    P. Ciaccia, M. Patella, Searching in metric spaces with user-defined and approximate distances. ACM TODS 27(4), 398–437 (2002)Google Scholar
  33. 33.
    P. Ciaccia, R. Torlone, Modeling the propagation of user preferences, in ER (Brussels, Belgium, 2011)Google Scholar
  34. 34.
    P. Ciaccia, M. Patella, F. Rabitti, P. Zezula, Indexing metric spaces with M-tree, in SEBD (Verona, Italy, 1997)Google Scholar
  35. 35.
    P. Ciaccia, M. Patella, P. Zezula, M-tree: an efficient access method for similarity search in metric spaces, in VLDB (Athens, Greece, 1997)Google Scholar
  36. 36.
    R. Datta, W. Ge, J. Li, J.Z. Wang, Toward bridging the annotation-retrieval gap in image search. IEEE Multimed. 14(3), 24–35 (2007)Google Scholar
  37. 37.
    R. Fagin, R. Guha et al., Multi-structural databases, in PODS (Baltimore, MD, 2005)Google Scholar
  38. 38.
    C. Faloutsos, R. Barber, et al., Efficient and effective querying by image content. JIIS 3(3/4), 231–262 (1994)Google Scholar
  39. 39.
    M. Flickner, H. Sawhney, et al., Query by image and video content: the QBIC system. IEEE Comput. 28(9), 23–32 (1995)Google Scholar
  40. 40.
    A. Graham, H. Garcia-Molina, A. Paepcke, T. Winograd, Time as essence for photo browsing through personal digital libraries, in JCDL (Portland, OR, 2002)Google Scholar
  41. 41.
    A. Guttman, R-Trees: a dynamic index structure for spatial searching, in SIGMOD (Boston, MA, 1984)Google Scholar
  42. 42.
    M. Hilbert, P. López, The world’s technological capacity to store, communicate, and compute information. Science 332(6025), 60–65 (2011)Google Scholar
  43. 43.
    A. Hinneburg, C.C. Aggarwal, D.A. Keim, What is the nearest neighbor in high dimensional spaces? in VLDB (Cairo, Egypt, 2000)Google Scholar
  44. 44.
    W. Hu, N. Xie, et al., A survey on visual content-based video indexing and retrieval. IEEE TSMC-C 41(6), 797–819 (2011)Google Scholar
  45. 45.
    W. Kießling, Foundations of preferences in database systems, in VLDB (Hong Kong, China, 2002)Google Scholar
  46. 46.
    J. Kleban, E. Moxley, J. Xu, B.S. Manjunath, Global annotation of geo-referenced photographs, in CIVR (Santorini, Greece, 2009)Google Scholar
  47. 47.
    J. Laaksonen, M. Koskela, S. Laakso, E. Oja, Self-organising maps as a relevance feedback technique in content-based image retrieval. PAA 2(4), 140–152 (2000)Google Scholar
  48. 48.
    J. Li, J.Z. Wang, Real-time computerized annotation of pictures, in MM (Santa Barbara, CA, 2006)Google Scholar
  49. 49.
    D.G. Lowe, Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)Google Scholar
  50. 50.
    C.D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval (Cambridge University Press, Cambridge, 2008)Google Scholar
  51. 51.
    O. Maron, A.L. Ratan, Multiple-instance learning for natural scene classification, in ICML (San Francisco, CA, 1998)Google Scholar
  52. 52.
    N. Meneghetti, D. Mindolin, P. Ciaccia, J. Chomicki, Output-sensitive evaluation of prioritized skyline queries, in SIGMOD (Melbourne, Australia, 2015)Google Scholar
  53. 53.
    D. Mitrović, M. Zeppelzauer, C. Breiteneder, Features for content-based audio retrieval. Adv. Comput. 78, 71–150 (2010)Google Scholar
  54. 54.
    P. Montanari, I. Bartolini et al., Looking for similar patterns in genomic sequences, in SEBD (Ugento, Italy, 2016)Google Scholar
  55. 55.
    P. Montanari, I. Bartolini, et al., Pattern similarity search in genomic sequences. TKDE 28(11), 3053–3067 (2016)Google Scholar
  56. 56.
    R. Navigli, Word sense disambiguation: a survey. ACM CSUR 41(2), 10 (2009)Google Scholar
  57. 57.
    M. Ortega, Y. Rui et al., Supporting similarity queries in MARS, in MM (Seattle, WA, 1997)Google Scholar
  58. 58.
    J.-Y. Pan, H. Yang, C. Faloutsos, P. Duygulu, Automatic multimedia cross-modal correlation discovery, in KDD (Seattle, WA, 2004)Google Scholar
  59. 59.
    M. Patella, P. Ciaccia, Approximate similarity search: a multi-faceted problem. JDA 7(1), 36–48 (2009)Google Scholar
  60. 60.
    A. Payne, S. Singh, A benchmark for indoor/outdoor scene classification, in ICAPR (Bath, UK, 2005)Google Scholar
  61. 61.
    A. Penta, A. Picariello, L. Tanca, Multimedia knowledge management using ontologies, in MS (Vancouver, BC, 2008)Google Scholar
  62. 62.
    A. Pentland, R.W. Picard, S. Sclaroff, Photobook: content-based manipulation of image databases. IJCV 18(3), 233–254 (1996)Google Scholar
  63. 63.
    Y. Rui, T.S. Huang, M. Ortega, S. Mehrotra, Relevance feedback: a power tool for interactive content-based image retrieval. IEEE TCSV 8(5), 644–655 1998Google Scholar
  64. 64.
    H. Samet, Foundations of Multidimensional and Metric Data Structures (Morgan Kaufmann, San Francisco, 2006)Google Scholar
  65. 65.
    S. Santini, R. Jain, Integrated browsing and querying for image databases. IEEE Multimed. 7(3), 26–39 (2000)Google Scholar
  66. 66.
    T. Seidl, H.-P. Kriegel, Efficient user adaptable similarity search in large multimedia databases, in VLDB (Athens, Greece, 1997)Google Scholar
  67. 67.
    A.W.M. Smeulders, M. Worring, et al., Content-based image retrieval at the end of the early years. IEEE TPAMI 22(12), 1349–1380 (2000)Google Scholar
  68. 68.
    M. Stricker, M. Orengo, Similarity of color images, in SPIE (San Jose, CA, 1995)Google Scholar
  69. 69.
    R. Torlone, P. Ciaccia, Finding the best when it’s a matter of preference, in SEBD (Portoferraio, Italy, 2002)Google Scholar
  70. 70.
    G. Trimponias, I. Bartolini, D. Papadias, D. Yang, Skyline processing on distributed vertical decompositions. IEEE TKDE 25(4), 850–862 (2013)Google Scholar
  71. 71.
    R. Tye, G. Nathaniel, N. Mor, Towards automatic extraction of event and place semantics from flickr tags, in SIGIR (Amsterdam, The Netherlands, 2007)Google Scholar
  72. 72.
    M. Wallace, K. Karpouzis, et al., The electronic road: personalized content browsing. IEEE Multimed. 10(3), 49–59 (2003)Google Scholar
  73. 73.
    L. Wang, L. Khan, Automatic image annotation and retrieval using weighted feature selection. MTAP 29(1), 55–71 (2006)Google Scholar
  74. 74.
    A. Yoshitaka, T. Ichikawa, A survey on content-based retrieval for multimedia databases. IEEE TKDE 11(1), 81–93 (1999)Google Scholar
  75. 75.
    P. Zezula, G. Amato, V. Dohnal, M. Batko, Similarity Search: The Metric Space Approach (Springer, Berlin, 2006)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ilaria Bartolini
    • 1
    Email author
  • Paolo Ciaccia
    • 1
  • Marco Patella
    • 1
  1. 1.DISI - Università di BolognaBolognaItaly

Personalised recommendations