Database Community and Health Related Data: Experiences Through the Last Decade

  • Pietro H. Guzzi
  • Giuseppe Tradigo
  • Pierangelo VeltriEmail author
Part of the Studies in Big Data book series (SBD, volume 31)


Database community has been involved in topics related to improve data-related techniques or to solve data access efficiency. Health domain has been attracting the interest of database community as an application domain for many database research topics, including: (i) health data heterogeneity (e.g., different health bioimages protocols), (ii) data size (e.g., patient health related data), (iii) biomedical signals (e.g., electrocardiography data, ECG), (iv) geographical data (e.g., epidemiological one), and more recently (v) genomic and proteomic data as well as NGS data. In this chapter we present experiences from the last decade, made in a medical school, where we used database experiences to manage and analyse clinical, biological and health related data. The methodology is problem oriented and shows how to start from a problem defined in the medical domain and choose and apply techniques often known by the database community. In this chapter interesting results, in terms of applications to the clinical and medical domains, are reported.


DICOM Image Vestibular Evoke Myogenic Potential Voice Signal Flat File Clinical Document Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to all colleagues working with us during latter decades. Many of them had roles in studying and defining problems and topics that have then been studied and that brings to the development of tools.


  1. 1.
    F. Amato, M. Cannataro, C. Cosentino, A. Garozzo, N. Lombardo, C. Manfredi, F. Montefusco, G. Tradigo, P. Veltri, Early detection of voice diseases via a web-based system. Biomed. Signal Proc. Control 4(3), 206–211 (2009)CrossRefGoogle Scholar
  2. 2.
    M. Cannataro, G. Cuda, M. Gaspari, S. Greco, G. Tradigo, P. Veltri, The eipeptidi tool: enhancing peptide discovery in ICAT-based LC MS/MS experiments. BMC Bioinform. 8 (2007)Google Scholar
  3. 3.
    M. Cannataro, D. Talia, G. Tradigo, P. Trunfio, P. Veltri, SIGMCC: a system for sharing meta patient records in a peer-to-peer environment. Future Gener. Comput. Syst. 24(3), 222–234 (2008)CrossRefGoogle Scholar
  4. 4.
    F. Cristiano, P. Veltri, M. Prosperi, G. Tradigo, On the identification of long non-coding rnas from RNA-Seq, in 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (IEEE, New York, 2016), pp. 1103–1106Google Scholar
  5. 5.
    L. Federico, P. Franco, A. Minelli, A. Perri, L. Caroprese, R. Picarelli, G. Tradigo, E. Vocaturo, F. Dattola, A. Fortunato, P. Lambardi, S. Laurita, I. Pellegrino, A. Garro, A. Pugliese, A. Tagarelli, P. Veltri, E. Zumpano, SINSE+: a software for the acquisition and analysis of open data in health and social area, in 24th Italian Symposium on Advanced Database Systems, SEBD 2016, Ugento, Lecce, Italy, June 19-22, 2016, Ugento, Lecce, Italia, June 19–22 (2016), pp. 310–317Google Scholar
  6. 6.
    J.D. Fernández, M. Lenzerini, M. Masseroli, F. Venco, S. Ceri, Ontology-based search of genomic metadata. IEEE/ACM Trans. Comput. Biology Bioinform. 13(2), 233–247 (2016)CrossRefGoogle Scholar
  7. 7.
    D.B. Fridsma, Health informatics: our domain, our challenge. J. Am. Med. Inf. Assoc. 23(6), 1202–1202 (2016)CrossRefGoogle Scholar
  8. 8.
    S.B. Gabriel, S.F. Schaffner, H. Nguyen, J.M. Moore, J. Roy, B. Blumenstiel, J. Higgins, M. DeFelice, A. Lochner, M. Faggart et al., The structure of haplotype blocks in the human genome. Science 296(5576), 2225–2229 (2002)CrossRefGoogle Scholar
  9. 9.
    F. Gullo, G. Ponti, A. Tagarelli, G. Tradigo, P. Veltri, A time series approach for clustering mass spectrometry data. J. Comput. Sci. 3(5), 344–355 (2012)CrossRefGoogle Scholar
  10. 10.
    L. Hood, S.H. Friend, Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat. Rev. Clin. Oncol. 8(3), 184–187 (2011)Google Scholar
  11. 11.
    C. Indolfi, M. Cannataro, P. Veltri, G. Tradigo, Cartesio: a software tool for pre-implant stent analyses, in 9th International Conference Computational Science - ICCS 2009, Baton Rouge, LA, USA, May 25–27, 2009, Proceedings, Part I (2009), pp. 810–818Google Scholar
  12. 12.
    E.S. Lander, L.M. Linton, B. Birren, C. Nusbaum, M.C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh et al., Initial sequencing and analysis of the human genome. Nature 409(6822), 860–921 (2001)CrossRefGoogle Scholar
  13. 13.
    H.N. Manners, M. Jha, P.H. Guzzi, P. Veltri, S. Roy, Computational methods for detecting functional modules from gene regulatory network, in Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies (ACM, New York, 2016), p. 3Google Scholar
  14. 14.
    S. Matl, R. Brosig, M. Baust, N. Navab, S. Demirci, Vascular image registration techniques: a living review. Med. Image Anal. 35, 1–17 (2017)CrossRefGoogle Scholar
  15. 15.
    P. Mildenberger, M. Eichelberg, E. Martin, Introduction to the dicom standard. Eur. Radiol. 12(4), 920–927 (2002)CrossRefGoogle Scholar
  16. 16.
    L. Palopoli, S.E. Rombo, G. Terracina, G. Tradigo, P. Veltri, Improving protein secondary structure predictions by prediction fusion. Inf. Fus. 10(3), 217–232 (2009)Google Scholar
  17. 17.
    E.F. Petricoin, A.M. Ardekani, B.A. Hitt, P.J. Levine, V.A. Fusaro, S.M. Steinberg, G.B. Mills, C. Simone, D.A. Fishman, E.C. Kohn et al., Use of proteomic patterns in serum to identify ovarian cancer. The lancet 359(9306), 572–577 (2002)CrossRefGoogle Scholar
  18. 18.
    G. Pio, D. Malerba, D. D’Elia, M. Ceci, Integrating microrna target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach. BMC Bioinf. 15(S-1), S4 (2014)Google Scholar
  19. 19.
    K. Predrag, C. Mirabello, G. Tradigo, I. Walsh, P. Veltri, G. Pollastri, Toward an accurate prediction of inter-residue distances in proteins using 2d recursive neural networks. BMC Bioinf. 15(1), 6 (2014)CrossRefGoogle Scholar
  20. 20.
    R. Sachidanandam, D. Weissman, S.C. Schmidt, J.M. Kakol, L.D. Stein, G. Marth, S. Sherry, J.C. Mullikin, B.J. Mortimore, D.L. Willey et al., A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409(6822), 928–933 (2001)CrossRefGoogle Scholar
  21. 21.
    G. Tradigo, P. Veltri, S. Greco, Geomedica: managing and querying clinical data distributions on geographical database systems. Procedia Comput. Sci. 1(1), 979–986 (2010)CrossRefGoogle Scholar
  22. 22.
    L. Vaira, M.A. Bochicchio, S.B. Navathe, Perspectives in healthcare data management with application to maternal and fetal wellbeing, in 24th Italian Symposium on Advanced Database Systems, SEBD 2016, Ugento, Lecce, Italy, June 19–22, 2016 (2016), pp. 31–40Google Scholar
  23. 23.
    S. Van de Velde, P. Roshanov, T. Kortteisto, I. Kunnamo, B. Aertgeerts, P.O. Vandvik, S. Flottorp, Tailoring implementation strategies for evidence-based recommendations using computerised clinical decision support systems: protocol for the development of the guides tools. Implement. Sci. 11(1), 1 (2016)Google Scholar
  24. 24.
    P. Veltri, M. Cannataro, G. Tradigo, Sharing mass spectrometry data in a grid-based distributed proteomics laboratory. Inf. Process. Manag. 43(3), 577–591 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Pietro H. Guzzi
    • 1
  • Giuseppe Tradigo
    • 2
  • Pierangelo Veltri
    • 2
    Email author
  1. 1.Department of Medical and Surgical SciencesUniversity of CatanzaroCatanzaroItaly
  2. 2.DIMESUniversity of CalabriaRendeItaly

Personalised recommendations