Advertisement

Multimedia Data Modeling and Management

  • Vincenzo MoscatoEmail author
  • Antonio Picariello
Chapter
Part of the Studies in Big Data book series (SBD, volume 31)

Abstract

Nowadays, multimedia data is surely one of the most popular and pervasive information and communication media that accompanies us in almost every walk of lives. They allow fast and effective communication and sharing of information about peoples’ lives, their behaviors, works, interests, and they are also the digital testimony of facts, objects, and locations and have become an essential component of social media networks. Technically speaking, how to organize and structure this huge amount of data using different paradigms, so that we can easily get useful information, has been a challenging research field for decades. In this chapter we will describe the main results produced by the Multimedia Database Research Group of University of Naples in this area: models for representing multimedia data and the related knowledge and techniques for their storage, indexing and retrieval. In addition, we also point out several applications, with a particular emphasis on social media networks.

Keywords

Image Database Query Image Video Surveillance Multimedia Data Multimedia Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Jain, A. Del Bimbo, T.-S. Chua, B. Furht, Survey papers in multimedia-guest editorial. Multimed. Tools Appl. 51(1), 1–4 (2011)CrossRefGoogle Scholar
  2. 2.
    X. Li, T. Uricchio, L. Ballan, M. Bertini, C.G. Snoek, A.D. Bimbo, Socializing the semantic gap: A comparative survey on image tag assignment, refinement, and retrieval. ACM Comput. Surv. (CSUR) 49(1), 14 (2016)CrossRefGoogle Scholar
  3. 3.
    A. Picariello, M.L. Sapino, Managing uncertainties in image databases, in Semantic-Based Visual Information Retrieval (2007), pp. 292–310Google Scholar
  4. 4.
    A. Chianese, A. Picariello, L. Sansone, M.L. Sapino, Managing uncertainties in image databases: A fuzzy approach. Multimed. Tools Appl. 23(3), 237–252 (2004)CrossRefGoogle Scholar
  5. 5.
    M.C. Suárez-Figueroa, G.A. Atemezing, O. Corcho, The landscape of multimedia ontologies in the last decade. Multimed. Tools Appl. 62(2), 377–399 (2013)CrossRefGoogle Scholar
  6. 6.
    A. Penta, A. Picariello, L. Tanca, Multimedia knowledge management using ontologies, in Proceedings of the 2nd ACM Workshop on Multimedia Semantics (ACM, 2008), pp. 24–31Google Scholar
  7. 7.
    V. Moscato, A. Penta, F. Persia, A. Picariello, Mowis: A system for building multimedia ontologies from web information sources, in IIR (2010), pp. 89–93Google Scholar
  8. 8.
    A. Chianese, V. Moscato, F. Persia, A. Picariello, C. Sansone, A framework for building multimedia ontologies from web information sources, in SEBD (2012), pp. 83–90Google Scholar
  9. 9.
    A. Chianese, V. Moscato, A. Picariello, A system for building multimedia ontologies from web information sources, in New Trends in Software Methodologies, Tools and Techniques - Proceedings of the Eleventh SoMeT 2012, Genoa, Italy, 26–28 September 2012 (2012), pp. 379–394Google Scholar
  10. 10.
    D.H. Ballard, Animate vision. Artif. Intell. 48(1), 57–86 (1991)MathSciNetCrossRefGoogle Scholar
  11. 11.
    L. Itti, C. Koch, E. Niebur, A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  12. 12.
    G. Boccignone, A. Picariello, V. Moscato, M. Albanese, Image similarity based on animate vision: Information path matching, in Multimedia Information Systems (2002), pp. 66–75Google Scholar
  13. 13.
    G. Boccignone, A. Chianese, V. Moscato, A. Picariello, Context-sensitive queries for image retrieval in digital libraries. J. Intell. Inf. Syst. 31(1), 53–84 (2008)CrossRefGoogle Scholar
  14. 14.
    G. Boccignone, A. Chianese, V. Moscato, A. Picariello, Foveated shot detection for video segmentation. IEEE Trans. Circuits Syst. Video Technol. 15(3), 365–377 (2005)CrossRefGoogle Scholar
  15. 15.
    M. Albanese, R. Chellappa, V. Moscato, A. Picariello, V. Subrahmanian, P. Turaga, O. Udrea, A constrained probabilistic petri net framework for human activity detection in video. IEEE Trans. Multimed. 10(8), 1429–1443 (2008)CrossRefGoogle Scholar
  16. 16.
    M. Albanese, R. Chellappa, N. Cuntoor, V. Moscato, A. Picariello, V. Subrahmanian, O. Udrea, Pads: A probabilistic activity detection framework for video data. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2246–2261 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Albanese, C. Molinaro, F. Persia, A. Picariello, V. Subrahmanian, Discovering the top-k unexplained sequences in time-stamped observation data. IEEE Trans. Knowl. Data Eng. 26(3), 577–594 (2014)CrossRefGoogle Scholar
  18. 18.
    C. Molinaro, V. Moscato, A. Picariello, A. Pugliese, A. Rullo, V. Subrahmanian, Padua: Parallel architecture to detect unexplained activities. ACM Trans. Internet Technol. (TOIT) 14(1), 3 (2014)CrossRefGoogle Scholar
  19. 19.
    F. Ricci, L. Rokach, B. Shapira, P.B. Kantor (eds.), Recommender Systems Handbook (Springer, Berlin, 2011)zbMATHGoogle Scholar
  20. 20.
    M. Albanese, A. d’Acierno, V. Moscato, F. Persia, A. Picariello, A multimedia recommender system. ACM Trans. Internet Technol. 13(1), 3 (2013)CrossRefGoogle Scholar
  21. 21.
    F. Colace, M.D. Santo, L. Greco, V. Moscato, A. Picariello, A collaborative user-centered framework for recommending items in online social networks. Comput. Hum. Behav. 51, 694–704 (2015)CrossRefGoogle Scholar
  22. 22.
    I. Bartolini, V. Moscato, R.G. Pensa, A. Penta, A. Picariello, C. Sansone, M.L. Sapino, Recommending multimedia visiting paths in cultural heritage applications. Multimed. Tools Appl. 75(7), 3813–3842 (2016)CrossRefGoogle Scholar
  23. 23.
    F. Colace, M.D.E. Santo, V. Moscato, A. Picariello, F.A. Schreiber, L. Tanca, Patch: A portable context-aware atlas for browsing cultural heritage, in Data Management in Pervasive Systems (Springer, Berlin, 2015), pp. 345–361Google Scholar
  24. 24.
    F. Amato, V. Moscato, A. Picariello, G. Sperlí, Multimedia social network modeling: a proposal, in 2016 IEEE Tenth International Conference on Semantic Computing (ICSC) (IEEE, 2016), pp. 448–453Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Universitá di Napoli “Federico II”, DIETINapoliItaly
  2. 2.CINI – ITEM National LabNapoliItaly

Personalised recommendations