Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 271 Accesses

Abstract

Equilibrium configurations such as those discussed in the previous chapter may be stable or unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These variables are referred to as ‘primitive’ to contrast with the other variable, \(\vec {\xi }\), that we will later use instead, and which is, in a sense, more ‘sophisticated’.

  2. 2.

    Omitting surface terms, the discussion of which is out of my scope here. For their analysis in the stellar case, see Cox (1980) and Smeyers and Van Hoolst (2010) for instance.

  3. 3.

    More precisely, this is called a Klein-Gordon equation, in which the Jeans wavenumber (cf. below) acts as the mass parameter. Physically, it is interesting to thus see the competition between gravitational attraction of the background and pressure (quantified by the Jeans wavenumber) as an inertia of the perturbation (like mass in the particle physics context), and hence acoustic waves behave differently than in the absence of gravity.

  4. 4.

    Cf. Eq. (7.22) for \(\vec {v}_1\), which comes from the definition of \(\vec {\xi }\), and then respectively (7.30) for \(\rho _1\), (7.31) for \(p_1\), (7.32) for \(\vec {B}_1\) and (7.34) for \(\vec {g}_1\), which come from the physics governing the system, i.e. from the conservation laws.

  5. 5.

    Note that we are only considering linear stability here, with infinitesimal displacements, so that we do not consider possible finite jumps from various local minima of the potential.

  6. 6.

    To be complete, this expression contains too, cf. Sect. 7.1.3.2.

  7. 7.

    It is so because we are dealing with a background state that is at rest. When adding flow, as introduced in Chap. 10, each of these three waves splits up into two, one backward and one forward. And also, it can be shown that because we are adopting a Lagrangian description, in terms of the displacement vector \(\vec {\xi }\), we are not taking into account a seventh wave, namely the Eulerian entropy wave, but which is marginal (\(\omega ^2=0\)) in this context. For more details see Sect. 5.2 of Goedbloed and Poedts (2004) and Sect. 13.1.3 of Goedbloed et al. (2010).

  8. 8.

    Finally, on the self-adjointness of the force operator, and thus on the reality of \(\omega ^2\), it is interesting to note that some stability studies do report complex-valued \(\omega \)s (e.g. Freundlich et al. 2014b, who analyze self-gravitating, non-rotatingfilaments, linearizing the system of perturbed equations in primitive variables). The origin of this complexity, whether physical or an artefact, in those cases is unclear at this point, but may reside in the chosen formal approach and the assumptions made.

  9. 9.

    In this process, the other two components of \(\vec {\xi }\) can be expressed as functions of \(\xi _x\) only, so that we may, if needed, recover the full expression of \(\vec {\xi }\) once the equation on \(\xi _x\) is solved. Therefore no information is lost, so this can really be seen as a reformulation of the vector problem.

  10. 10.

    To be precise, in this article the author takes gravity into account, but in the Cowling approximation only, the discussion of which is left for the next chapter.

  11. 11.

    As the following of the manuscript will show, determining the nature of the singularities will be somewhat subtle.

  12. 12.

    This ordering also justifies the terminology ‘slow’ and ‘fast’ for the magneto-acoustic waves.

  13. 13.

    This is at the origin of the terminology ‘Sturmian’ mentioned.

  14. 14.

    To be a little more precise, because his discussion happens in the context of stellar pulsations, Cox (1980) shows that \(|\Phi _1| \propto \left[ k^2 + \frac{l(l+1)}{r^2}\right] ^{-1}\), where k is the radial wavenumber and l is the spherical harmonic order, so that in spherical systems, what is meant by ‘high order mode’ is large k and/or large l.

  15. 15.

    Therefore we do not expect WKB dispersion relations to reveal instabilities in the directions of stratification.

References

  • Al-Gwaiz, M. A. (2008). Sturm-liouville theory and its applications. London: Springer.

    MATH  Google Scholar 

  • Bender, C. M., & Orszag, S. A. (1978). Advanced mathematical methods for scientists and engineers. New York: McGraw-Hill.

    Google Scholar 

  • Bernstein, I. B., Frieman, E. A., Kruskal, M. D., & Kulsrud, R. M. (1958). Proceedings of the Royal Society of London Series A, 244, 17.

    Google Scholar 

  • Beyer, H. R. (1995). Journal of Mathematical Physics, 36, 4792.

    Article  ADS  MathSciNet  Google Scholar 

  • Beyer, H. R., Aksoylu, B., & Celiker, F. (2016). Journal of Mathematical Physics, 57, 062902.

    Article  ADS  MathSciNet  Google Scholar 

  • Beyer, H. R., & Schmidt, B. G. (1995). Astronomy and Astrophysics, 296, 722.

    ADS  Google Scholar 

  • Binney, J., & Tremaine, S. (2008). Galactic dynamics (2nd edn.). Princeton: Princeton University Press.

    Google Scholar 

  • Breysse, P. C., Kamionkowski, M., & Benson, A. (2014). Monthly Notices of the Royal Astronomical Society, 437, 2675.

    Article  ADS  Google Scholar 

  • Burkert, A., & Hartmann, L. (2004). The Astrophysical Journal, 616, 288.

    Article  ADS  Google Scholar 

  • Chandrasekhar, S., & Fermi, E. (1953). The Astrophysical Journal, 118, 116.

    Article  ADS  MathSciNet  Google Scholar 

  • Cowling, T. G. (1941). Monthly Notices of the Royal Astronomical Society, 101, 367.

    Google Scholar 

  • Cox, J. P. (1980). Theory of stellar pulsation. Princeton: Princeton University Press.

    Google Scholar 

  • Elmegreen, B. G., & Elmegreen, D. M. (1978). The Astrophysical Journal, 220, 1051.

    Article  ADS  Google Scholar 

  • Freundlich, J., Jog, C. J., & Combes, F. (2014a). Astronomy and Astrophysics, 564, A7.

    Article  ADS  Google Scholar 

  • Freundlich, J., Jog, C. J., Combes, F., & Anathpindika, S. 2014b, in SF2A-2014: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, ed. J. Ballet, F. Martins, F. Bournaud, R. Monier, & C. Reylé (Société Française d’Astronomie et d’Astrophysique), 325–328.

    Google Scholar 

  • Frieman, E., & Rotenberg, M. (1960). Reviews of Modern Physics, 32, 898.

    Article  ADS  MathSciNet  Google Scholar 

  • Goedbloed, J. P. (1971). Physica, 53, 412.

    Article  ADS  Google Scholar 

  • Goedbloed, J. P., Keppens, R., & Poedts, S. (2010). Advanced magnetohydrodynamics. New York: Cambridge University Press.

    Google Scholar 

  • Goedbloed, J. P., & Sakanaka, P. H. (1974). Physics of Fluids, 17, 908.

    Article  ADS  MathSciNet  Google Scholar 

  • Goedbloed, J. P. H., & Poedts, S. (2004). Principles of Magnetohydrodynamics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Goldreich, P., & Lynden-Bell, D. (1965). Monthly Notices of the Royal Astronomical Society, 130, 97.

    Article  ADS  Google Scholar 

  • Goldstein, H. (1980). Classical mechanics, (2nd edn.), Addison-Wesley series in Physics. Reading: Addison-Wesley.

    Google Scholar 

  • Hasan, S. S., & Sobouti, Y. (1987). Monthly Notices of the Royal Astronomical Society, 228, 427.

    Article  ADS  Google Scholar 

  • İbanoğlu, C., (Ed.). (2000). Variable Stars as Essential Astrophysical Tools, NATO Advanced Science Institutes. ASI) Series C (Dordrecht: Springer, Netherlands).

    Google Scholar 

  • Jeans, J. H. (1902). Philosophical transactions of the royal society a: mathematical. Physical and Engineering Sciences, 199, 1.

    Article  Google Scholar 

  • Kellman, S. A. (1972). The Astrophysical Journal, 175, 363.

    Article  ADS  Google Scholar 

  • Kellman, S. A. (1973). The Astrophysical Journal, 179, 103.

    Google Scholar 

  • Kereš, D., & Hernquist, L. (2009). The Astrophysical Journal, 700, L1.

    Article  ADS  Google Scholar 

  • Langer, W. D. (1978). The Astrophysical Journal, 225, 95.

    Article  ADS  Google Scholar 

  • Ledoux, P. (1951). Annales d’Astrophysique, 14, 438.

    ADS  Google Scholar 

  • Lequeux, J., Falgarone, E., & Ryter, C. (2005). The interstellar medium, astronomy and astrophysics library. Heidelberg: Springer.

    Google Scholar 

  • Loeb, A., & Furlanetto, S. R. (2013). The First Galaxies in the Universe, Princeton Series in Astrophysics. Princeton: Princeton University Press.

    Google Scholar 

  • Mesinger, A., (ed.). (2016). Astrophysics and space science library, Vol. 423, Understanding the Epoch of Cosmic Reionization. Cham: Springer International Publishing.

    Google Scholar 

  • Miyama, S. M., Narita, S., & Hayashi, C. (1987a). Progress of Theoretical Physics, 78, 1051.

    Article  ADS  Google Scholar 

  • Miyama, S. M., Narita, S., & Hayashi, C. (1987b). Progress of Theoretical Physics, 78, 1273.

    Article  ADS  Google Scholar 

  • Nakano, T. (1988). Publications of the Astronomical Society of Japan, 40, 593.

    ADS  Google Scholar 

  • Nakano, T., & Nakamura, T. (1978). Publications of the Astronomical Society of Japan, 30, 671.

    ADS  Google Scholar 

  • Narita, S., Miyama, S. M., Kiguchi, M., & Hayashi, C. (1988). Progress of Theoretical Physics Supplement, 96, 63.

    Article  ADS  Google Scholar 

  • Ostriker, J. (1964). The Astrophysical Journal, 140, 1529.

    Article  ADS  MathSciNet  Google Scholar 

  • Planck Collaboration. (2016). arXiv:1605.03507, accepted in accepted in Astronomy and Astrophysics Safronov, V. S. 1960, Annales d’Astrophysique, 23, 979.

  • Safronov, V. S. (1960). Annales d’Astrophysique, 23, 979.

    ADS  Google Scholar 

  • Simon, R. (1965a). Annales d’Astrophysique, 28, 625.

    ADS  Google Scholar 

  • Simon, R. (1965b). Annales d’Astrophysique, 28, 40.

    ADS  Google Scholar 

  • Smeyers, P., & Van Hoolst, T. (2010). textitAstrophysics and space science library, Vol. 371, Linear Isentropic Oscillations of Stars. Heidelberg: Springer Berlin Heidelberg.

    Google Scholar 

  • Strittmatter, P. A. (1966). Monthly Notices of the Royal Astronomical Society, 132, 359.

    Article  ADS  Google Scholar 

  • Suydam, B. R. (1958). In Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy (Vol. 31, pp. 157–159). Geneva: United Nations Publications.

    Google Scholar 

  • Tomisaka, K., & Ikeuchi, S. (1983). Publications of the Astronomical Society of Japan, 35, 187.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Durrive .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Durrive, JB. (2017). Spectral Theory. In: Baryonic Processes in the Large-Scale Structuring of the Universe. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-61881-4_7

Download citation

Publish with us

Policies and ethics