Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 266 Accesses

Abstract

In this thesis, I have focused on two major questions of Cosmology and Astrophysics: The origin of cosmological magnetic fields (part I) and the advent of gravitational instabilities (Jeans, Rayleigh-Taylor and convection) in the Cosmic Web (part II).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It may seem paradoxical that adding a constraint increases the number of solutions. A nice analogy to convince ourselves that this is indeed not necessarily the case is the following. Instead of one ball on a hill as in Fig. 7.4, consider two balls on opposite sides of the hill. As such, the balls roll down the hill, so that this is clearly not a stable equilibrium. However, if the two balls are attached together by a wire, i.e. we add a constraint, then an infinite number of stable solutions now exist.

  2. 2.

    See also details and discussion in Goedbloed (2011).

  3. 3.

    I here mean the genuine WKB approach for finding approximate solutions to a differential equation for which the highest order term contains a small parameter, not the WKB-type dispersion relations discuted in the previous chapter.

References

  • Balbinski, E. (1984). Monthly Notices of the Royal Astronomical Society, 209, 145.

    Article  ADS  Google Scholar 

  • Barston, E. M. (1964). Annals of Physics, 29, 282.

    Article  ADS  MathSciNet  Google Scholar 

  • Bender, C. M., & Orszag, S. A. (1978). Advanced mathematical methods for scientists and engineers. McGraw-Hill.

    Google Scholar 

  • Binney, J., & Tremaine, S. (2008). Galactic dynamics (2nd ed.,) Princeton University Press.

    Google Scholar 

  • Cautun, M., van de Weygaert, R., Jones, B. J. T., & Frenk, C. S. (2014). Monthly Notices of the Royal Astronomical Society, 441, 2923.

    Article  ADS  Google Scholar 

  • Chew, G. F., Goldberger, M. L., & Low, F. E. (1956). Proceedings of the royal society a: Mathematical. Physical and Engineering Sciences, 236, 112.

    Article  MATH  Google Scholar 

  • Cox, J. P. (1980). Theory of stellar pulsation. Princeton University Press.

    Google Scholar 

  • Falceta-Gonçalves, D., & Kowal, G. (2015). The Astrophysical Journal, 808, 65.

    Article  ADS  Google Scholar 

  • Freidberg, J. P. (2014). Ideal MHD. Cambridge University Press.

    Google Scholar 

  • Frieman, E., & Rotenberg, M. (1960). Reviews of Modern Physics, 32, 898.

    Article  ADS  MathSciNet  Google Scholar 

  • Goedbloed, H. (2011). Magnetohydrodynamic Spectroscopy: Unraveling the dynamics of plasma on all scales from the laboratory to the Universe. oral presentation at the workshop “Advanced Magnetohydrodynamics" held at the Lorentz Center, 11–15 April. https://www.lorentzcenter.nl/lc/web/2011/441/info.php3?wsid=441.

  • Goedbloed, J. P., Keppens, R., & Poedts, S. (2010). Advanced Magnetohydrodynamics Cambridge University Press.

    Google Scholar 

  • Goedbloed, J. P. H., & Poedts, S. (2004). Principles of Magnetohydrodynamics. Cambridge University Press.

    Google Scholar 

  • Goldreich, P., & Lynden-Bell, D. (1965). Monthly Notices of the Royal Astronomical Society, 130, 97.

    Article  ADS  Google Scholar 

  • Lacey, C. G. (1989). The Astrophysical Journal, 336, 612.

    Article  ADS  Google Scholar 

  • Landau, L. (1946). 1946, & Журнал ЭкспериментальноЙ и ТеоретическоЙ Физики 16, 574, english translation by E. Lifshitz in Journal of Physics (Academy of Sciences of the USSR), 10, 25.

    Google Scholar 

  • Sedláček, Z. (1971). Journal of Plasma Physics, 5, 239.

    Article  ADS  Google Scholar 

  • Takata, M. (2012). Progress in Solar/Stellar Physics with Helio- and Asteroseismology. In H. Shibahashi, M. Takata, & A. E. Lynas-Gray (Eds.) Astronomical Society of the Pacific Conference Series.(Vol. 462) (412).

    Google Scholar 

  • Van Kampen, N. G. (1955). Physica, 21, 949.

    Article  ADS  MathSciNet  Google Scholar 

  • Welter, G. L. (1982). Astronomy and Astrophysics, 105, 237.

    ADS  Google Scholar 

  • Wilcots, E. (2004). New Astronomy Reviews, 48, 1281. (special issue dedicated to “Science with the Square Kilometre Array”, ed. C. Carilli & S. Rawlings).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Durrive .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Durrive, JB. (2017). Prospects. In: Baryonic Processes in the Large-Scale Structuring of the Universe. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-61881-4_10

Download citation

Publish with us

Policies and ethics