Skip to main content

Quantum BMS\(_3\) Symmetry

  • Chapter
  • First Online:
BMS Particles in Three Dimensions

Part of the book series: Springer Theses ((Springer Theses))

  • 483 Accesses

Abstract

This chapter is devoted to irreducible unitary representations of the BMS\(_3\) group, i.e. BMS\(_3\) particles, which we classify and interpret. As we shall see, the classification is provided by supermomentum orbits that coincide with coadjoint orbits of the Virasoro group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We recall that the definition of quasi-invariant measures was given in Sect. 3.2.

  2. 2.

    Note that the existence of a quasi-invariant measure \(d\mu (q)\) on \({\mathcal O}_p\) implies the existence of infinitely many other ones, since one can always multiply the measure by a strictly positive smooth function \(\rho (q)\) and obtain a new measure \(\rho (q)d\mu (q)\).

  3. 3.

    To our knowledge there is, at present, no detailed review on BMS symmetry. Accordingly the literature review provided here cannot fail to be biased by the author’s ignorance; we apologize in advance for the references that we may have missed.

  4. 4.

    Recall that we use the same notation for both the \(\mathfrak {bms}_3\) algebra and its central extension.

  5. 5.

    I am indebted to Axel Kleinschmidt for this observation.

  6. 6.

    This occurrence of the \(\mathfrak {bms}_3\) algebra predates its gravitational description [127] by a decade!

  7. 7.

    Here \(\delta \) denotes the delta function associated by (3.39) with the measure \(\mu \).

References

  1. G. Barnich, B. Oblak, Notes on the BMS group in three dimensions: I. Induced representations. JHEP 06, 129 (2014), arXiv:1403.5803

  2. G. Barnich, B. Oblak, Notes on the BMS group in three dimensions: II. Coadjoint representation. JHEP 03, 033 (2015), arXiv:1502.00010

  3. B. Oblak, Characters of the BMS group in three dimensions. Commun. Math. Phys. 340(1), 413–432 (2015), arXiv:1502.03108

  4. A. Campoleoni, H.A. González, B. Oblak, M. Riegler, BMS modules in three dimensions. Int. J. Mod. Phys. A 31(12), 1650068 (2016), arXiv:1603.03812

  5. G. Barnich, H.A. González, A. Maloney, B. Oblak, One-loop partition function of three-dimensional flat gravity. JHEP 04, 178 (2015), arXiv:1502.06185

  6. A. Campoleoni, H.A. González, B. Oblak, M. Riegler, Rotating higher spin partition functions and extended BMS symmetries. JHEP 04, 034 (2016), arXiv:1512.03353

  7. National Academy of Sciences, Biographical Memoirs, vol. 61. The National Academies Press, Washington, DC (1992)

    Google Scholar 

  8. A. Alekseev, S. Shatashvili, From geometric quantization to conformal field theory. Comm. Math. Phys. 128(1), 197–212 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. H. Airault, P. Malliavin, Unitarizing probability measures for representations of Virasoro algebra. Journal de Mathématiques Pures et Appliquées 80(6), 627–667 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Airault, Mesure unitarisante: algèbre de Heisenberg, algèbre de Virasoro. Comptes Rendus Mathematique 334, 787–792 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Airault, P. Malliavin, A. Thalmaier, Support of Virasoro unitarizing measures. Comptes Rendus Mathematique 335(7), 621–626 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Airault, Affine coordinates and Virasoro unitarizing measures. Journal de Mathématiques Pures et Appliquées 82(4), 425–455 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Dai, D. Pickrell, The orbit method and the Virasoro extension of Diff\(^+\)(\(S^1\)). I. Orbital integrals. J. Geom. Phys. 44, 623–653 (2003)

    Google Scholar 

  14. E.T. Shavgulidze, A measure that is quasi-invariant with respect to the action of a group of diffeomorphisms of a finite-dimensional manifold. Dokl. Akad. Nauk SSSR 303(4), 811–814 (1988)

    MathSciNet  Google Scholar 

  15. E.T. Shavgulidze, An example of a measure quasi-invariant under the action of the diffeomorphism group of the circle. Funkts. Anal. Prilozh. 12(3), 55–60 (1978)

    Google Scholar 

  16. E.T. Shavgulidze, Mesures quasi-invariantes sur les groupes de difféomorphismes des variétés riemaniennes. C. R. Acad. Sci. Paris 321, 229–232 (1995)

    MathSciNet  MATH  Google Scholar 

  17. E.T. Shavgulidze, Quasiinvariant measures on groups of diffeomorphisms. in Loop spaces and groups of diffeomorphisms. Collected papers, pp. 181–202 (1997); translation from tr. mat. inst. steklova 217, 189–208. Moscow: MAIK Nauka/Interperiodica Publishing (1997)

    Google Scholar 

  18. V. Bogachev, Gaussian Measures. Mathematical surveys and monographs (American Mathematical Society, Providence, 1998)

    Google Scholar 

  19. H. Shimomura, Quasi-invariant measures on the group of diffeomorphisms and smooth vectors of unitary representations. J. Funct. Anal. 187(2), 406–441 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Strominger, Asymptotic symmetries of yang-mills theory. JHEP 07, 151 (2014), arXiv:1308.0589

  21. A. Strominger, On BMS invariance of gravitational scattering. JHEP 07, 152 (2014), arXiv:1312.2229

  22. H. Bondi, Gravitational waves in general relativity. Nature 186(4724), 535 (1960)

    Article  ADS  MATH  Google Scholar 

  23. H. Bondi, M.G.J. van der Burg, A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems. Proc. Roy. Soc. Lond. A 269, 21–52 (1962)

    Article  ADS  MATH  Google Scholar 

  24. R. Sachs, Asymptotic symmetries in gravitational theory. Phys. Rev. 128, 2851–2864 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times. Proc. Roy. Soc. Lond. A 270, 103–126 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. R. Penrose, Asymptotic properties of fields and space-times. Phys. Rev. Lett. 10, 66–68 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Komar, Quantized gravitational theory and internal symmetries. Phys. Rev. Lett. 15, 76–78 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. P.J. McCarthy, Asymptotically flat space-times and elementary particles. Phys. Rev. Lett. 29, 817–819 (1972)

    Article  ADS  Google Scholar 

  29. P.J. McCarthy, Representations of the Bondi-Metzner-Sachs group. I. Determination of the representations, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 330(1583), 517–535 (1972), http://rspa.royalsocietypublishing.org/content/330/1583/517.full.pdf

  30. P.J. McCarthy, Structure of the Bondi-Metzner-Sachs group. J. Math. Phys. 13(11), 1837–1842 (1972)

    Article  ADS  MATH  Google Scholar 

  31. P.J. McCarthy, Representations of the Bondi-Metzner-Sachs group. II. Properties and classification of the representations, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 333(1594), 317–336 (1973), http://rspa.royalsocietypublishing.org/content/333/1594/317.full.pdf

  32. P.J. McCarthy, M. Crampin, Representations of the Bondi-Metzner-Sachs group. III. Poincaré spin multiplicities and irreducibility, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 335(1602), 301–311 (1973), http://rspa.royalsocietypublishing.org/content/335/1602/301.full.pdf

  33. M. Crampin, P.J. McCarthy, Representations of the Bondi-Metzner-Sachs group. IV. Cantoni representations are induced, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 351(1664), 55–70 (1976), http://rspa.royalsocietypublishing.org/content/351/1664/55.full.pdf

  34. V. Cantoni, A class of representations of the generalized Bondi-Metzner group. J. Math. Phys. 7(8), 1361–1364 (1966)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. V. Cantoni, Reduction of some representations of the generalized Bondi-Metzner group. J. Math. Phys. 8(8), 1700–1706 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. L. Girardello, G. Parravicini, Continuous spins in the Bondi-Metzner-Sachs group of asymptotic symmetry in general relativity. Phys. Rev. Lett. 32, 565–568 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Crampin, Physical significance of the topology of the Bondi-Metzner-Sachs group. Phys. Rev. Lett. 33, 547–550 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  38. P.J. McCarthy, The Bondi-Metzner-Sachs group in the nuclear topology, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 343(1635), 489–523 (1975), http://rspa.royalsocietypublishing.org/content/343/1635/489.full.pdf

  39. A. Piard, Unitary representations of semi-direct product groups with infinite dimensional Abelian normal subgroup. Rep. Math. Phys. 11(2), 259–278 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. A. Piard, Representations of the Bondi-Metzner-Sachs group with the hilbert topology. Rep. Math. Phys. 11, 279–283 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. U. Cattaneo, Borel multipliers for the Bondi-Metzner-Sachs group. J. Math. Phys. 20, 2257–2263 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. M.A. Awada, G.W. Gibbons, W.T. Shaw, Conformal supergravity, Twistors and the Super BMS group. Ann. Phys. 171, 52 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. R. Geroch, Asymptotic structure of space-time, in Asymptotic Structure of Space-Time (Springer US, Boston, 1977), pp. 1–105

    Google Scholar 

  44. R.P. Geroch, Null infinity is not a good initial data surface. J. Math. Phys. 19, 1300–1303 (1978)

    Article  ADS  Google Scholar 

  45. A. Ashtekar, R.O. Hansen, A unified treatment of null and spatial infinity in general relativity. I - Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity. J. Math. Phys. 19, 1542–1566 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Ashtekar, M. Streubel, Symplectic geometry of radiative modes and conserved quantities at null infinity. Proc. Roy. Soc. Lond. A 376, 585–607 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  47. A. Ashtekar, Asymptotic quantization of the gravitational field. Phys. Rev. Lett. 46, 573–576 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  48. A. Ashtekar, Asymptotic Quantization: Based on 1984 Naples Lectures (1987)

    Google Scholar 

  49. G. ’tHooft, Dimensional reduction in quantum gravity, in Salamfest 1993:0284-296, (1993), pp. 284–296, arXiv:gr-qc/9310026

  50. L. Susskind, The World as a hologram. J. Math. Phys. 36, 6377–6396 (1995), arXiv:hep-th/9409089

  51. J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  52. S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113 (1999), arXiv:hep-th/9711200. [Adv. Theor. Math. Phys. 2, 231 (1998)]

  54. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998), arXiv:hep-th/9802150

  55. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string theory. Phys. Lett. B 428, 105–114 (1998), arXiv:hep-th/9802109

  56. R. Bousso, Holography in general space-times. JHEP 06, 028 (1999), arXiv:hep-th/9906022

  57. R. Bousso, The Holographic principle for general backgrounds. Class. Quant. Grav. 17, 997–1005 (2000), arXiv:hep-th/9911002

  58. G. Arcioni, C. Dappiaggi, Exploring the holographic principle in asymptotically flat space-times via the BMS group. Nucl. Phys. B 674, 553–592 (2003), arXiv:hep-th/0306142

  59. G. Arcioni, C. Dappiaggi, Holography in asymptotically flat space-times and the BMS group. Class. Quant. Grav. 21, 5655 (2004), arXiv:hep-th/0312186

  60. C. Dappiaggi, Elementary particles, holography and the BMS group. Phys. Lett. B 615, 291–296 (2005), arXiv:hep-th/0412142

  61. C. Dappiaggi, BMS field theory and holography in asymptotically flat space-times. JHEP 11, 011 (2004), arXiv:hep-th/0410026

  62. G. Arcioni, C. Dappiaggi, Holography and BMS field theory. AIP Conf. Proc. 751, 176–178 (2005), arXiv:hep-th/0409313, [176 (2004)]

  63. G. Barnich, C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited. Phys. Rev. Lett. 105, 111103 (2010), arXiv:0909.2617

  64. G. Barnich, C. Troessaert, Aspects of the BMS/CFT correspondence. JHEP 05, 062 (2010), arXiv:1001.1541

  65. T. Banks, A Critique of pure string theory: heterodox opinions of diverse dimensions, arXiv:hep-th/0306074

  66. A. Virmani, Supertranslations and holographic stress tensor. JHEP 02, 024 (2012), arXiv:1112.2146

  67. G. Barnich, C. Troessaert, Comments on holographic current algebras and asymptotically flat four dimensional spacetimes at null infinity. JHEP 11, 003 (2013), arXiv:1309.0794

  68. G. Barnich, P.-H. Lambert, Einstein-Yang-Mills theory: asymptotic symmetries. Phys. Rev. D 88, 103006 (2013), arXiv:1310.2698

  69. P.-H. Lambert, Conformal symmetries of gravity from asymptotic methods: further developments. Ph.D. thesis, Brussels U (2014), arXiv:1409.4693

  70. I. Fujisawa, R. Nakayama, Bondi-Metzner-Sachs surface-charge algebra via a Hamiltonian framework. Phys. Rev. D 91(12), 126005 (2015), arXiv:1503.03225

  71. G. Barnich, C. Troessaert, Supertranslations call for superrotations. PoS 010 (2010), arXiv:1102.4632. [Ann. U. Craiova Phys.21, S11 (2011)]

  72. G. Barnich, A. Gomberoff, H.A. González, The flat limit of three dimensional asymptotically anti-de Sitter spacetimes. Phys. Rev. D 86, 024020 (2012), arXiv:1204.3288

  73. H.A. González, M. Pino, Asymptotically flat spacetimes in 3D bigravity. Phys. Rev. D 86, 084045 (2012), arXiv:1207.0882

  74. G. Barnich, Entropy of three-dimensional asymptotically flat cosmological solutions. JHEP 10, 095 (2012), arXiv:1208.4371

  75. G. Barnich, A. Gomberoff, H.A. González, Three-dimensional Bondi-Metzner-Sachs invariant two-dimensional field theories as the flat limit of Liouville theory. Phys. Rev. D 87(12), 124032 (2013), arXiv:1210.0731

  76. G. Barnich, H.A. González, Dual dynamics of three dimensional asymptotically flat Einstein gravity at null infinity. JHEP 05, 016 (2013), arXiv:1303.1075

  77. W. Schulgin and J. Troost, Asymptotic symmetry groups and operator algebras. JHEP 09, 135 (2013), arXiv:1307.3423

  78. C. Krishnan, A. Raju, S. Roy, A Grassmann path from \(AdS_3\) to flat space. JHEP 03, 036 (2014), arXiv:1312.2941

  79. J. Hartong, Holographic reconstruction of 3D flat space-time, arXiv:1511.01387

  80. V. Bonzom, B. Dittrich, 3D holography: from discretum to continuum. JHEP 03, 208 (2016), arXiv:1511.05441

  81. G. Barnich, C. Troessaert, D. Tempo, R. Troncoso, Asymptotically locally flat spacetimes and dynamical nonspherically-symmetric black holes in three dimensions. Phys. Rev. D 93(8), 084001 (2016), arXiv:1512.05410

  82. C. Troessaert, D. Tempo, R. Troncoso, Asymptotically flat black holes and gravitational waves in three-dimensional massive gravity, in 8th Aegean Summer School: Gravitational Waves: From Theory to Observations Rethymno, Crete, Greece, June 29–July 4 (2015), arXiv:1512.09046

  83. A. Bagchi, The BMS/GCA correspondence, arXiv:1006.3354

  84. A. Bagchi, Correspondence between asymptotically flat spacetimes and nonrelativistic conformal field theories. Phys. Rev. Lett. 105, 171601 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  85. A. Bagchi, R. Fareghbal, BMS/GCA redux: towards flatspace holography from non-relativistic symmetries. JHEP 10, 092 (2012), arXiv:1203.5795

  86. A. Bagchi, S. Detournay, D. Grumiller, Flat-space chiral gravity. Phys. Rev. Lett. 109, 151301 (2012), arXiv:1208.1658

  87. A. Bagchi, S. Detournay, R. Fareghbal, J. Simón, Holography of 3D flat cosmological horizons. Phys. Rev. Lett. 110(14), 141302 (2013), arXiv:1208.4372

  88. H.R. Afshar, Flat/AdS boundary conditions in three dimensional conformal gravity. JHEP 10, 027 (2013), arXiv:1307.4855

  89. R. Fareghbal, A. Naseh, Flat-space energy-momentum tensor from BMS/GCA correspondence. JHEP 03, 005 (2014), arXiv:1312.2109

  90. A. Bagchi, D. Grumiller, J. Salzer, S. Sarkar, F. Schller, Flat space cosmologies in two dimensions - phase transitions and asymptotic mass-domination. Phys. Rev. D 90(8), 084041 (2014), arXiv:1408.5337

  91. R. Fareghbal, A. Naseh, Aspects of Flat/CCFT correspondence. Class. Quant. Grav. 32 135013 (2015), arXiv:1408.6932

  92. R. Fareghbal, S.M. Hosseini, Holography of 3D asymptotically flat black holes. Phys. Rev. D 91(8), 084025 (2015), arXiv:1412.2569

  93. A. Bagchi, D. Grumiller, W. Merbis, Stress tensor correlators in three-dimensional gravity. Phys. Rev. D 93(6), 061502 (2016), arXiv:1507.05620

  94. S.M. Hosseini, A. Véliz-Osorio, Gravitational anomalies, entanglement entropy, and flat-space holography. Phys. Rev. D 93(4), 046005 (2016), arXiv:1507.06625

  95. R. Fareghbal, A. Naseh, S. Rouhani, Scale vs conformal invariance in ultra-relativistic field theory, arXiv:1511.01774

  96. N. Banerjee, D.P. Jatkar, S. Mukhi, T. Neogi, Free-field realisations of the BMS\(_3\) algebra and its extensions, arXiv:1512.06240

  97. R. Fareghbal, Y. Izadi, Flat-space holography and stress tensor of kerr black hole, arXiv:1603.04137

  98. T. He, V. Lysov, P. Mitra, A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem. JHEP 05, 151 (2015), arXiv:1401.7026

  99. F. Cachazo, A. Strominger, Evidence for a new soft graviton theorem, arXiv:1404.4091

  100. D. Kapec, V. Lysov, S. Pasterski, A. Strominger, Semiclassical Virasoro symmetry of the quantum gravity \( \cal{S}\)-matrix. JHEP 08, 058 (2014), arXiv:1406.3312

  101. D. Kapec, V. Lysov, S. Pasterski, A. Strominger, Higher-Dimensional Supertranslations and Weinberg’s Soft Graviton Theorem, arXiv:1502.07644

  102. T. He, P. Mitra, A.P. Porfyriadis, A. Strominger, New symmetries of massless QED. JHEP 10, 112 (2014), arXiv:1407.3789

  103. V. Lysov, S. Pasterski, A. Strominger, Low’s subleading soft theorem as a symmetry of QED. Phys. Rev. Lett. 113(11), 111601 (2014), arXiv:1407.3814

  104. D. Kapec, V. Lysov, A. Strominger, Asymptotic symmetries of massless QED in even dimensions, arXiv:1412.2763

  105. T. He, P. Mitra, A. Strominger, 2D kac-moody symmetry of 4D yang-mills theory, arXiv:1503.02663

  106. D. Kapec, M. Pate, A. Strominger, New symmetries of QED, arXiv:1506.02906

  107. A. Strominger, Magnetic corrections to the soft photon theorem. Phys. Rev. Lett. 116(3), 031602 (2016), arXiv:1509.00543

  108. T.T. Dumitrescu, T. He, P. Mitra, A. Strominger, Infinite-dimensional fermionic symmetry in supersymmetric gauge theories, arXiv:1511.07429

  109. M. Campiglia, A. Laddha, Asymptotic symmetries of QED and weinberg’s soft photon theorem. JHEP 07 (2015), arXiv:1505.05346

  110. M. Campiglia, A. Laddha, Asymptotic symmetries of gravity and soft theorems for massive particles. JHEP 12, 094 (2015), arXiv:1509.01406

  111. A. Strominger, A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems. JHEP 01, 08 (2016), arXiv:1411.5745

  112. S. Pasterski, A. Strominger, A. Zhiboedov, New gravitational memories, arXiv:1502.06120

  113. S. Pasterski, Asymptotic symmetries and electromagnetic memory, arXiv:1505.00716

  114. S.W. Hawking, M.J. Perry, A. Strominger, Soft hair on black holes, arXiv:1601.00921

  115. G. Barnich, C. Troessaert, BMS charge algebra. JHEP 12, 105 (2011), arXiv:1106.0213

  116. G. Barnich, C. Troessaert, Finite BMS transformations. JHEP 03, 167 (2016), arXiv:1601.04090

  117. M. Campiglia, A. Laddha, Asymptotic symmetries and subleading soft graviton theorem. Phys. Rev. D 90(12), 124028 (2014), arXiv:1408.2228

  118. M. Campiglia, A. Laddha, New symmetries for the gravitational S-matrix. JHEP 04, 076 (2015), arXiv:1502.02318

  119. G. Compère, J. Long, Vacua of the gravitational field, arXiv:1601.04958

  120. A. Barut, R. Rączka, Theory of Group Representations and Applications (World Scientific, Singapore, 1986)

    Book  MATH  Google Scholar 

  121. M. Schottenloher, A Mathematical Introduction to Conformal Field Theory. Lecture Notes in Physics (Springer, Berlin, 2008)

    Google Scholar 

  122. A. Bagchi, R. Gopakumar, I. Mandal, A. Miwa, GCA in 2d. JHEP 08, 004 (2010), arXiv:0912.1090

  123. D. Grumiller, M. Riegler, J. Rosseel, Unitarity in three-dimensional flat space higher spin theories. JHEP 07, 015 (2014), arXiv:1403.5297

  124. B. Feigin, D. Fuks, Casimir operators in modules over virasoro algebra. Dokl. Akad. Nauk SSSR 269(5), 1057–1060 (1983)

    MathSciNet  MATH  Google Scholar 

  125. A. Schild, Classical null strings. Phys. Rev. D 16, 1722 (1977)

    Article  ADS  Google Scholar 

  126. F. Lizzi, B. Rai, G. Sparano, A. Srivastava, Quantization of the null string and absence of critical dimensions. Phys. Lett. B 182, 326–330 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  127. A. Ashtekar, J. Bicak, B.G. Schmidt, Asymptotic structure of symmetry reduced general relativity. Phys. Rev. D 55, 669–686 (1997), arXiv:gr-qc/9608042

  128. J. Gamboa, C. Ramirez, M. Ruiz-Altaba, Null spinning strings. Nucl. Phys. B 338, 143–187 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  129. J. Gamboa, C. Ramirez, M. Ruiz-Altaba, Quantum null (super) strings. Phys. Lett. B 225, 335–339 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  130. A. Bagchi, Tensionless strings and galilean conformal algebra. JHEP 05, 141 (2013), arXiv:1303.0291

  131. A. Bagchi, S. Chakrabortty, P. Parekh, Tensionless strings from worldsheet symmetries. JHEP 01, 158 (2016), arXiv:1507.04361

  132. E. Casali, P. Tourkine, On the null origin of the ambitwistor string, arXiv:1606.05636

  133. B. Feigin, D. Fuks, Verma modules over the Virasoro algebra. Funkts. Anal. Prilozh. 17(3), 91–92 (1983)

    MathSciNet  MATH  Google Scholar 

  134. A. Wassermann, Kac-Moody and Virasoro algebras (2010), arXiv:1004.1287

  135. A. Wassermann, Direct proofs of the Feigin-Fuchs character formula for unitary representations of the Virasoro algebra (2010), arXiv:1012.6003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blagoje Oblak .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Oblak, B. (2017). Quantum BMS\(_3\) Symmetry. In: BMS Particles in Three Dimensions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-61878-4_10

Download citation

Publish with us

Policies and ethics