Advertisement

Physical Implications

Chapter
  • 555 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Having described in Chap.  8 the technical details to obtain a holographic effective field theory which takes into account momentum dissipation effects, we are now ready to discuss the physical implication of the technical result previously obtained.

References

  1. 1.
    P. Kovtun, D.T. Son, A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005)Google Scholar
  2. 2.
    L.P. Pitaevskii, E.M. Lifshitz, in Physical Kinetics, vol. 10 (Elsevier Science, 2012)Google Scholar
  3. 3.
    N. Iqbal, H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm. Phys. Rev. D 79, 025023 (2009)Google Scholar
  4. 4.
    S. Cremonini, The shear viscosity to entropy ratio: a status report. Mod. Phys. Lett. B 25, 1867–1888 (2011)Google Scholar
  5. 5.
    P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories. J. Phys. A 45, 473001 (2012)Google Scholar
  6. 6.
    A. Adams, L.D. Carr, T. Schfer, P. Steinberg, J.E. Thomas, Strongly correlated quantum fluids, Ultracold quantum gases, quantum Chromodynamic plasmas, and Holographic duality. New J. Phys. 14, 115009 (2012)Google Scholar
  7. 7.
    J.D. Rameau, T.J. Reber, H.-B. Yang, S. Akhanjee, G.D. Gu, P.D. Johnson, S. Campbell, Nearly perfect fluidity in a high-temperature superconductor. Phys. Rev. B 90, 134509 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    S.A. Hartnoll, Theory of universal incoherent metallic transport. Nat. Phys. 11, 54 (2015)Google Scholar
  9. 9.
    P. Kovtun, Fluctuation bounds on charge and heat diffusion. J. Phys. A 48(26), 265002 (2015)Google Scholar
  10. 10.
    M. Blake, A. Donos, Quantum critical transport and the hall angle. Phys. Rev. Lett. 114(2), 021601 (2015)Google Scholar
  11. 11.
    M. Blake, D. Tong, Universal resistivity from Holographic massive gravity. Phys. Rev. D 88(10), 106004 (2013)Google Scholar
  12. 12.
    A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli, D. Musso, Thermo-electric transport in gauge/gravity models with momentum dissipation. JHEP 09, 160 (2014)Google Scholar
  13. 13.
    N.E. Hussey, Phenomenology of the normal state in-plane transport properties of high- t c cuprates. J. Phys. Condens. Matter 20(12), 123201 (2008)Google Scholar
  14. 14.
    S.A. Hartnoll, A. Karch, Scaling theory of the cuprate strange metals. Phys. Rev. B 91(15), 155126 (2015)Google Scholar
  15. 15.
    A. Karch, Conductivities for Hyperscaling violating geometries. JHEP 06, 140 (2014)Google Scholar
  16. 16.
    S.A. Hartnoll, P.K. Kovtun, M. Muller, S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes. Phys. Rev. B 76, 144502 (2007)Google Scholar
  17. 17.
    S. Hod, Radiative tail of realistic rotating gravitational collapse. Phys. Rev. Lett. 84, 10–13 (2000)Google Scholar
  18. 18.
    M. Matusiak, K. Rogacki, B.W. Veal, Enhancement of the hall-lorenz number in optimally doped yba\(_{2}\) cu \(_{3}\) o \(_{7-d}\). EPL 88(4), 47005 (2009)Google Scholar
  19. 19.
    D.V. Khveshchenko, Viable phenomenologies of the normal state of cuprates. Europhys. Lett. 111, 1700 (2015)CrossRefGoogle Scholar
  20. 20.
    J. Loram, Evidence on the pseudogap and condensate from the electronic specific heat. J. Phys. Chem. Solids 62, 59–64 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    J.W. Loram, K.A. Mirza, J.R. Cooper, W.Y. Liang, J.M. Wade, Electronic specific heat of \(yba2cu3o6+x\) from 1.8 to 300 k. J. Supercond. 7(1), 243–249 (1994)Google Scholar
  22. 22.
    J.W. Loram, K.A. Mirza, J.R. Cooper, W.Y. Liang, J.M. Wade, Electronic specific heat of yba2cu3o6+x from 1.8 to 300 k. J. Supercond. 7(1), 243–249 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    R.A. Davison, K. Schalm, J. Zaanen, Holographic duality and the resistivity of strange metals. Phys. Rev. B 89(24), 245116 (2014)Google Scholar
  24. 24.
    S.D. Obertelli, J.R. Cooper, J.L. Tallon, Systematics in the thermoelectric power of high-\({\mathit{t}}_{\mathit{c}}\) oxides. Phys. Rev. B 46, 14928–14931 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    J.S. Kim, B.H. Kim, D.C. Kim, Y.W. Park, Thermoelectric power of La2-xSrxCuO4 at high temperatures. Ann. der Phys. 516, 43–47 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    J.L. Cohn, S.A. Wolf, V. Selvamanickam, K. Salama, Thermoelectric power of \({\rm yba\rm _{2}{\rm cu}\rm _{3}{\rm o}\rm _{7\rm -}\rm \delta }\): Phonon drag and multiband conduction. Phys. Rev. Lett. 66, 1098–1101 (1991)Google Scholar
  27. 27.
    S.F. Shandarin, A.L. Melott, K. McDavitt, J.L. Pauls, J. Tinker, The shape of the first collapsed objects. Phys. Rev. Lett. 75, 7–10 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Wang, L. Li, N.P. Ong, Nernst effect in high-\({T}_{c}\) superconductors. Phys. Rev. B 73, 024510 (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Mathematical Physics of Fundamental InteractionsUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations