Momentum Dissipation in Holography

Part of the Springer Theses book series (Springer Theses)


In this Section, after discussing the basic properties of the massive gravity model which we consider, we will explain how to compute the thermo-electric transport coefficients for this system.


  1. 1.
    D. Vegh, in Holography Without Translational Symmetry (2013)Google Scholar
  2. 2.
    S.F. Hassan, R.A. Rosen, On Non-linear actions for massive gravity. JHEP 07, 009 (2011)Google Scholar
  3. 3.
    R.A. Davison, Momentum relaxation in holographic massive gravity. Phys. Rev. D 88, 086003 (2013)Google Scholar
  4. 4.
    M. Blake, D. Tong, Universal resistivity from holographic massive gravity. Phys. Rev. D 88(10), 106004 (2013)Google Scholar
  5. 5.
    R.A. Davison, B. Goutraux, Dissecting holographic conductivities. JHEP 09, 090 (2015)Google Scholar
  6. 6.
    M. Blake, D. Tong, D. Vegh, Holographic lattices give the graviton an effective mass. Phys. Rev. Lett. 112(7), 071602 (2014)Google Scholar
  7. 7.
    G.T. Horowitz, J.E. Santos, D. Tong, Optical conductivity with holographic Lattices. JHEP 07, 168 (2012)Google Scholar
  8. 8.
    L. Alberte, A. Khmelnitsky, Stability of massive gravity solutions for holographic conductivity. Phys. Rev. D 91(4), 046006 (2015)Google Scholar
  9. 9.
    A. Donos, J.P. Gauntlett, Thermoelectric DC conductivities from black hole horizons. JHEP 11, 081 (2014)Google Scholar
  10. 10.
    N. Iqbal, H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm. Phys. Rev. D 79, 025023 (2009)Google Scholar
  11. 11.
    V. Balasubramanian, P. Kraus, A stress tensor for Anti-de Sitter gravity. Commun. Math. Phys. 208, 413–428 (1999)Google Scholar
  12. 12.
    A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli, D. Musso, Thermo-electric transport in gauge/gravity models with momentum dissipation. JHEP 09, 160 (2014)Google Scholar
  13. 13.
    S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, Building a Holographic Superconductor. Phys. Rev. Lett. 101, 031601 (2008)Google Scholar
  14. 14.
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis, R. Meyer, Effective holographic theories for low-temperature condensed matter systems. JHEP 11, 151 (2010)Google Scholar
  15. 15.
    A. Donos, J.P. Gauntlett, Holographic Q-lattices. JHEP 04, 040 (2014)Google Scholar
  16. 16.
    K. Goldstein, S. Kachru, S. Prakash, S.P. Trivedi, Holography of charged dilaton black holes. JHEP 08, 78 (2010)Google Scholar
  17. 17.
    S.S. Gubser, F.D. Rocha, Peculiar properties of a charged dilatonic black hole in \(AdS_5\). Phys. Rev. D 81, 046001 (2010)Google Scholar
  18. 18.
    R.A. Davison, K. Schalm, J. Zaanen, Holographic duality and the resistivity of strange metals. Phys. Rev. B 89(24), 245116 (2014)Google Scholar
  19. 19.
    S.A. Hartnoll, P.K. Kovtun, M. Muller, S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes. Phys. Rev. B 76, 144502 (2007)Google Scholar
  20. 20.
    N.R. Cooper, B.I. Halperin, I.M. Ruzin, Thermoelectric response of an interacting two-dimensional electron gas in a quantizing magnetic field. Phys. Rev. B 55, 2344–2359 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    M. Blake, A. Donos, N. Lohitsiri, Magnetothermoelectric response from holography. JHEP 08, 124 (2015)Google Scholar
  22. 22.
    A. Donos, B. Goutraux, E. Kiritsis, Holographic metals and insulators with Helical symmetry. JHEP 09, 38 (2014)Google Scholar
  23. 23.
    B. Goutraux, Charge transport in holography with momentum dissipation. JHEP 04, 181 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    K.-Y. Kim, K.K. Kim, Y. Seo, S.-J. Sin, Thermoelectric conductivities at finite magnetic field and the Nernst effect. JHEP 07, 27 (2015)Google Scholar
  25. 25.
    A. Lucas, S. Sachdev, Memory matrix theory of magnetotransport in strange metals. Phys. Rev. B 91(19), 195122 (2015)Google Scholar
  26. 26.
    A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli, D. Musso, Analytic dc thermoelectric conductivities in holography with massive gravitons. Phys. Rev. D 91(2), 025002 (2015)Google Scholar
  27. 27.
    R.A. Davison, B. Goutraux. Momentum dissipation and effective theories of coherent and incoherent transport. JHEP 01, 039 (2015)Google Scholar
  28. 28.
    M. Blake, A. Donos, Quantum critical transport and the hall angle. Phys. Rev. Lett. 114(2), 021601 (2015)Google Scholar
  29. 29.
    S.A. Hartnoll, C.P. Herzog, Ohm’s Law at strong coupling: S duality and the cyclotron resonance. Phys. Rev. D 76, 106012 (2007)Google Scholar
  30. 30.
    M. Blake, Momentum relaxation from the fluid/gravity correspondence. JHEP 09, 010 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Mathematical Physics of Fundamental InteractionsUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations