The Gauge Gravity Duality

Part of the Springer Theses book series (Springer Theses)


In this section we briefly review the basic concepts of Conformal Field Theories (CFTs) which are necessary to understand the AdS/CFT correspondence.


  1. 1.
    P. Di Francesco, P. Mathieu, D. Senechal, Conformal Field Theory, Graduate Texts in Contemporary Physics (Springer, New York, 1997)Google Scholar
  2. 2.
    S. Rychkov, EPFL Lectures on Conformal Field Theory in D = 3 Dimensions, SpringerBriefs in Physics (2016)Google Scholar
  3. 3.
    A.M. Polyakov, Conformal symmetry of critical fluctuations. JETP Lett. 12, 381–383 (1970). (Pisma Zh. Eksp. Teor. Fiz. 12,538(1970))Google Scholar
  4. 4.
    Adam Bzowski, Paul McFadden, Kostas Skenderis, Implications of conformal invariance in momentum space. JHEP 03, 111 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Danny Birmingham, Topological black holes in Anti-de Sitter space. Class. Quant. Grav. 16, 1197–1205 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    C. Charmousis, Introduction to Anti de Sitter Black Holes, (Springer, Heidelberg, 2011), pp. 3–26Google Scholar
  7. 7.
    S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2011)Google Scholar
  8. 8.
    S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972)Google Scholar
  9. 9.
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999). (Adv. Theor. Math. Phys. 2,231(1998))Google Scholar
  10. 10.
    L. Susskind, J. Lindesay, in An Introduction to Black Holes, Information and the String Theory Revolution: The Holographic Universe (2005)Google Scholar
  11. 11.
    D. Jacob, Bekenstein, Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)MathSciNetGoogle Scholar
  12. 12.
    S.W. Hawking, Black hole explosions. Nature 248, 30–31 (1974)ADSCrossRefGoogle Scholar
  13. 13.
    S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string theory. Phys. Lett. B428, 105–114 (1998)Google Scholar
  14. 14.
    Edward Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kostas Skenderis, Lecture notes on holographic renormalization. Class. Quant. Grav. 19, 5849–5876 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A. Coddington, N. Levinson, in Theory of Ordinary Differential Equations, International series in pure and applied mathematics (McGraw-Hill, 1955)Google Scholar
  17. 17.
    Peter Breitenlohner, Daniel Z. Freedman, Stability in gauged extended supergravity. Ann. Phys. 144, 249 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    R.M. Wald, in Quantum Field Theory in Curved Space-Time, Gravitation and quantizations. Proceedings, 57th Session of the Les Houches Summer School in Theoretical Physics, NATO Advanced Study Institute, Les Houches, France, July 5 - August 1, 1992 (1992), pp. 63–168Google Scholar
  19. 19.
    Donald Marolf, Simon F. Ross, Boundary Conditions, New Dualities, Vector fields in AdS/CFT. JHEP 11, 085 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    L. Susskind, E. Witten, in The Holographic Bound in Anti-de Sitter Space (1998)Google Scholar
  21. 21.
    D.T. Son, A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications. JHEP 09, 42 (2002)Google Scholar
  22. 22.
    J. Zinn-Justin, Quantum Field Theory at Finite Temperature: An Introduction (2000)Google Scholar
  23. 23.
    Takeo Matsubara, A new approach to quantum statistical mechanics. Prog. Theor. Phys. 14, 351–378 (1955)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    R.M. Wald, General Relativity (1984)Google Scholar
  25. 25.
    Kristjan Kannike, Gert Htsi, Liberato Pizza, Antonio Racioppi, Martti Raidal, Alberto Salvio, Alessandro Strumia, Dynamically induced Planck scale and inflation. JHEP 05, 065 (2015)CrossRefGoogle Scholar
  26. 26.
    T. Gary, Horowitz, Introduction to Holographic Superconductors. Lect. Notes Phys. 828, 313–347 (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Mathematical Physics of Fundamental InteractionsUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations