Advertisement

Theoretical Attempts

Chapter
  • 557 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The experimental scenario described in the previous sections strongly suggest that the standard Fermi liquid paradigm is not valid for hight-\(T_c\) superconductors.

Keywords

Marginal Fermi Liquid Quasi-particle Residue Quantum Critical Point Quantum Phase Transition Standard Fermi Liquid Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N.E. Hussey, Phenomenology of the normal state in-plane transport properties of high- t c cuprates. J. Phys. Condens. Matter 20(12), 123201 (2008)Google Scholar
  2. 2.
    P.W. Anderson, Hall effect in the two-dimensional luttinger liquid. Phys. Rev. Lett. 67, 2092–2094 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams, A.E. Ruckenstein, Phenomenology of the normal state of cu-o high-temperature superconductors. Phys. Rev. Lett. 63, 1996–1999 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    A.V. Narlikar, in Studies of High Temperature Superconductors: Advances in Research and Applications, vol. 11, Advances in Research and Applications (Nova Science Publishers, 1993)Google Scholar
  5. 5.
    C.M. Varma, Elihu Abrahams, Effective lorentz force due to small-angle impurity scattering: Magnetotransport in high- \({T}_{c}\) superconductors. Phys. Rev. Lett. 86, 4652–4655 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    T. Valla, A.V. Fedorov, P.D. Johnson, B.O. Wells, S.L. Hulbert, Q. Li, G.D. Gu, N. Koshizuka, Evidence for quantum critical behavior in the optimally doped cuprate bi\(_{2}\)sr\(_{2}\)cacu\(_{2}\) \(o_{8+\partial }\). Science 285(5436), 2110–2113 (1999)CrossRefGoogle Scholar
  7. 7.
    A. Narduzzo, G. Albert, M.M.J. French, N. Mangkorntong, M. Nohara, H. Takagi, N.E. Hussey, Violation of the isotropic mean free path approximation for overdoped \({\text{ la }}_{2{-}x}{\text{ sr }}_{x}{\text{ cuo }}_{4}\). Phys. Rev. B 77, 220502 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    T. Valla, A.V. Fedorov, P.D. Johnson, Q. Li, G.D. Gu, N. Koshizuka, Temperature dependent scattering rates at the fermi surface of optimally doped \({\text{ bi }}_{2}{\text{ sr }}_{2}{\text{ cacu }}_{2}{O}_{8+{{\delta }}}\). Phys. Rev. Lett. 85, 828–831 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    E.C. Carter, A.J. Schofield, Small-angle scattering in a marginal fermi liquid. Phys. Rev. B 66, 241102 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    R. Hlubina, Hall effect in the cuprates: The role of forward scattering on impurities. Phys. Rev. B 64, 132508 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    S. Sachdev, in Quantum Phase Transitions (Cambridge University Press, 2001)Google Scholar
  12. 12.
    Subir Sachdev, Where is the quantum critical point in the cuprate superconductors? Phys. Status Solidi B 247, 537 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Mathematical Physics of Fundamental InteractionsUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations