The Fermi Liquid Breakdown: High-\(T_c\) Superconductivity

Part of the Springer Theses book series (Springer Theses)


The Fermi liquid theory that we have outlined in the previous Section has been tremendously successful in explaining almost all metallic states in nature. However, fortunately nature hides always great surprises.


  1. 1.
    J.G. Bednorz, K.A. Müller, Possible hightc superconductivity in the balacuo system. Zeitschrift für Phys. B Condens. Matter 64(2), 189–193 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    M. Tinkham, in Introduction to Superconductivity, 2nd edn., Dover Books on Physics (Dover Publications, 2004)Google Scholar
  3. 3.
    H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, A new high- t c oxide superconductor without a rare earth element. Jpn. J. Appl. Phys. 27(2A), L209 (1988)Google Scholar
  4. 4.
    M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Superconductivity at 93 k in a new mixed-phase y-ba-cu-o compound system at ambient pressure. Phys. Rev. Lett. 58, 908–910 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    P. Dai, B.C. Chakoumakos, G.F. Sun, K.W. Wong, Y. Xin, D.F. Lu, Synthesis and neutron powder diffraction study of the superconductor hgba2ca2cu3o8 + by tl substitution. Phys. C Supercond. 243(34), 201–206 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    C.Q. Choi, in Iron Exposed as High-Temperature Superconductor (2008)Google Scholar
  7. 7.
    A.J. Leggett, What do we know about high \(t_c\)? Nat. Phys. 2, 134–136 (2006)Google Scholar
  8. 8.
    Z.-A. Ren, G.-C. Che, X.-L. Dong, J. Yang, W. Lu, W. Yi, X.-L. Shen, Z.-C. Li, L.-L. Sun, F. Zhou, Z.-X. Zhao, Superconductivity and phase diagram in iron-based arsenic-oxides refeaso 1 (re = rare-earth metal) without fluorine doping. EPL Europhys. Lett. 83(1), 17002 (2008)Google Scholar
  9. 9.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)zbMATHGoogle Scholar
  10. 10.
    N. Barisic, M.K. Chan, Y. Li, Y. Guichuan, X. Zhao, M. Dressel, A. Smontara, M. Greven, Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors. Proc. Natl. Acad. Sci. United States of America 110(30), 12235–12240 (2013)Google Scholar
  11. 11.
    R.M. Hazen, L.W. Finger, R.J. Angel, C.T. Prewitt, N.L. Ross, H.K. Mao, C.G. Hadidiacos, P.H. Hor, R.L. Meng, C.W. Chu, Crystallographic description of phases in the y-ba-cu-o superconductor. Phys. Rev. B 35, 7238–7241 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    A. Hermann, in Thallium-Based High-Temperature Superconductors, Applied Physics (Taylor & Francis, 1993)Google Scholar
  13. 13.
    N.P. Armitage, P. Fournier, R.L. Greene, Progress and perspectives on electron-doped cuprates. Rev. Mod. Phys. 82, 2421–2487 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, O.K. Andersen, Band-structure trend in hole-doped cuprates and correlation with \({{t}}_{{c}}\)max. Phys. Rev. Lett. 87, 047003 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    H.-Q. Ding, Could in-plane exchange anisotropy induce the observed antiferromagnetic transitions in the undoped high-\({{t}}_{{c}}\) materials? Phys. Rev. Lett. 68, 1927–1930 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    M.A. Kastner, R.J. Birgeneau, G. Shirane, Y. Endoh, Magnetic, transport, and optical properties of monolayer copper oxides. Rev. Mod. Phys. 70, 897–928 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    T. Thio, T.R. Thurston, N.W. Preyer, P.J. Picone, M.A. Kastner, H.P. Jenssen, D.R. Gabbe, C.Y. Chen, R.J. Birgeneau, A. Aharony, Antisymmetric exchange and its influence on the magnetic structure and conductivity of \({\text{la}}_{2}cu{\text{ o }}_{4}\). Phys. Rev. B 38, 905–908 (1988)Google Scholar
  18. 18.
    T. Yildirim, A.B. Harris, O. Entin-Wohlman, and Amnon Aharony, Spin structures of tetragonal lamellar copper oxides. Phys. Rev. Lett. 72, 3710–3713 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    C. Hartiger, in Doping Dependence of Phase Transitions and Ordering Phenomena in Cuprate Superconductors, DFG FG 538 (2009)Google Scholar
  20. 20.
    M.R. Presland, General trends in oxygen stoichiometry effects on tc in bi and tl superconductors. Phys. C Supercond. 176(13), 95–105 (1991)Google Scholar
  21. 21.
    J.L. Tallon, C. Bernhard, H. Shaked, R.L. Hitterman, J.D. Jorgensen, Generic superconducting phase behavior in high-\({{t}}_{{c}}\) cuprates: \({{t}}_{{c}}\) variation with hole concentration in \({\text{ yba }}_{2}{\text{ cu }}_{3}{\text{ o }}_{7{{-}}{{\delta }}}\). Phys. Rev. B 51, 12911–12914 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    C.C. Tsuei, J.R. Kirtley, Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969–1016 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    D.J. Van Harlingen, Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors-evidence for \({d}_{{x}^{2}{-}{y}^{2}}\) symmetry. Rev. Mod. Phys. 67, 515–535 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    N.-C. Yeh, C.-T. Chen, G. Hammerl, J. Mannhart, A. Schmehl, C.W. Schneider, R.R. Schulz, S. Tajima, K. Yoshida, D. Garrigus, M. Strasik, Evidence of doping-dependent pairing symmetry in cuprate superconductors. Phys. Rev. Lett. 87, 087003 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    T. Timusk, B. Statt, The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62(1), 61 (1999)Google Scholar
  26. 26.
    J. Loram, Evidence on the pseudogap and condensate from the electronic specific heat. J. Phys. Chem. Solids 62, 59–64 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    J.W. Loram, K.A. Mirza, J.R. Cooper, W.Y. Liang, Electronic specific heat of \({\text{ yba }}_{2}{\text{ cu }}_{3}{\text{ o }}_{6+{x}}\) from 1.8 to 300 k. Phys. Rev. Lett. 71, 1740–1743 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    J.W. Loram, K.A. Mirza, J.R. Cooper, W.Y. Liang, J.M. Wade, Electronic specific heat of yba2cu3o6+x from 1.8 to 300 k. J. Supercond. 7(1), 243–249 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    D.N. Basov, T. Timusk, Electrodynamics of high-\({T}_{c}\) superconductors. Rev. Mod. Phys. 77, 721–779 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    N.E. Hussey, K. Takenaka, H. Takagi, Universality of the mottiofferegel limit in metals. Phil. Mag. 84(27), 2847–2864 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    K. Takenaka, J. Nohara, R. Shiozaki, S. Sugai, Incoherent charge dynamics of \({\text{ la }}_{2{-}x}{\text{ sr }}_{x}{\text{ cuo }}_{4}:\) dynamical localization and resistivity saturation. Phys. Rev. B 68, 134501 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    J. Orenstein, G.A. Thomas, A.J. Millis, S.L. Cooper, D.H. Rapkine, T. Timusk, L.F. Schneemeyer, J.V. Waszczak, Frequency- and temperature-dependent conductivity in \({\text{ yba }}_{2}{\text{ cu }}_{3}{\text{ o }}_{6+{x}}\) crystals. Phys. Rev. B 42, 6342–6362 (1990)Google Scholar
  33. 33.
    B. Bucher, P. Steiner, J. Karpinski, E. Kaldis, P. Wachter, Influence of the spin gap on the normal state transport in \({\text{ yba }}_{2}{\text{ cu }}_{4}{\text{ o }}_{8}\). Phys. Rev. Lett. 70, 2012–2015 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    N.E. Hussey, K. Nozawa, H. Takagi, S. Adachi, K. Tanabe, Anisotropic resistivity of \({\text{ yba }}_{2}{\text{ cu }}_{4}{\text{ o }}_{8}\): Incoherent-to-metallic crossover in the out-of-plane transport. Phys. Rev. B 56, R11423–R11426 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    T. Ito, K. Takenaka, S. Uchida, Systematic deviation from t-linear behavior in the in-plane resistivity of \({\text{ yba }}_{2}{\text{ cu }}_{3}{\text{ o }}_{7{-}}{y}\): Evidence for dominant spin scattering. Phys. Rev. Lett. 70, 3995–3998 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Ando, G.S. Boebinger, A. Passner, T. Kimura, K. Kishio, Logarithmic divergence of both in-plane and out-of-plane normal-state resistivities of superconducting \({\text{ la }}_{2{-}x}{\text{ sr }}_{x}\text{ Cu }{\text{ o }}_{4}\) in the zero-temperature limit. Phys. Rev. Lett. 75, 4662–4665 (1995)Google Scholar
  37. 37.
    G.S. Boebinger, Y. Ando, A. Passner, T. Kimura, M. Okuya, J. Shimoyama, K. Kishio, K. Tamasaku, N. Ichikawa, S. Uchida, Insulator-to-metal crossover in the normal state of \({\text{ la }}_{2{-}{x}}{\text{ sr }}_{{x}}{\text{ cuo }}_{4}\) near optimum doping. Phys. Rev. Lett. 77, 5417–5420 (1996)Google Scholar
  38. 38.
    S. Ono, Y. Ando, T. Murayama, F.F. Balakirev, J.B. Betts, G.S. Boebinger, Metal-to-insulator crossover in the low-temperature normal state of \({{\text{ Bi }}_{2}\text{ Sr }}_{2{-}{x}}{\text{ la }}_{{x}}{\text{ cuo }}_{6+{\delta }}\). Phys. Rev. Lett. 85, 638–641 (2000)Google Scholar
  39. 39.
    A.P. Mackenzie, S.R. Julian, D.C. Sinclair, C.T. Lin, Normal-state magnetotransport in superconducting \({\text{ tl }}_{2}{\text{ ba }}_{2}{\text{ cuo }}_{6+{{\delta }}}\) to millikelvin temperatures. Phys. Rev. B 53, 5848–5855 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    T. Manako, Y. Kubo, Y. Shimakawa, Transport and structural study of \({\text{ tl }}_{2}{\text{ ba }}_{2}{\text{ cuo }}_{6+{{\delta }}}\) single crystals prepared by the kcl flux method. Phys. Rev. B 46, 11019–11024 (1992)Google Scholar
  41. 41.
    S.H. Naqib, J.R. Cooper, J.L. Tallon, C. Panagopoulos, Temperature dependence of electrical resistivity of high-tc cupratesfrom pseudogap to overdoped regions. Phys. C Supercond. 387(34), 365–372 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    A. Kaminski, S. Rosenkranz, H.M. Fretwell, Z.Z. Li, H. Raffy, M. Randeria, M.R. Norman, J.C. Campuzano, Crossover from coherent to incoherent electronic excitations in the normal state of \({\text{ b }\text{ i }}_{2}{\text{ s }\text{ r }}_{2}{\text{ c }\text{ a }\text{ c }\text{ u }}_{2}{\text{ o }}_{8+{\delta }}\). Phys. Rev. Lett. 90, 207003 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    A.A. Abrikosov, in Introduction to the Theory of Normal Metals, Solid State Physics Series (Academic Press, 1972)Google Scholar
  44. 44.
    T.R. Chien, Z.Z. Wang, N.P. Ong, Effect of zn impurities on the normal-state hall angle in single-crystal \({\text{ yba }}_{2}{\text{ cu }}_{3{{-}}{x}}{\text{ zn }}_{{x}}{\text{ o }}_{7{{-}}{{\delta }}}\). Phys. Rev. Lett. 67, 2088–2091 (1991)ADSCrossRefGoogle Scholar
  45. 45.
    H.Y. Hwang, B. Batlogg, H. Takagi, H.L. Kao, J. Kwo, R.J. Cava, J.J. Krajewski, W.F. Peck, Scaling of the temperature dependent hall effect in \({\text{ la }}_{2{{-}}{x}}{\text{ sr }}_{{x}}{\text{ cuo }}_{4}\). Phys. Rev. Lett. 72, 2636–2639 (1994)ADSCrossRefGoogle Scholar
  46. 46.
    G. Xiao, P. Xiong, M.Z. Cieplak, Universal hall effect in \({\text{ la }}_{1.85}{\text{ sr }}_{0.15}{\text{ cu }}_{1{{-}}{x}}{{a}}_{{x}}{\text{ o }}_{4}\) systems (a=fe, co, ni, zn, ga). Phys. Rev. B 46, 8687–8690 (1992)Google Scholar
  47. 47.
    Y. Ando, T. Murayama, Nonuniversal power law of the hall scattering rate in a single-layer cuprate \({\text{ bi }}_{2}{\text{ sr }}_{2{-}x}{\text{ la }}_{x}{\text{ cuo }}_{6}\). Phys. Rev. B 60, R6991–R6994 (1999)Google Scholar
  48. 48.
    J.M. Harris, Y.F. Yan, P. Matl, N.P. Ong, P.W. Anderson, T. Kimura, K. Kitazawa, Violation of kohler’s rule in the normal-state magnetoresistance of \({\text{ yba }}_{2}{\text{ cu }}_{3}{O}_{7{-}{{\delta }}} and {\text{ la }}_{2}{\text{ sr }}_{x}{\text{ cuo }}_{4}\). Phys. Rev. Lett. 75, 1391–1394 (1995)ADSCrossRefGoogle Scholar
  49. 49.
    T. Kimura, S. Miyasaka, H. Takagi, K. Tamasaku, H. Eisaki, S. Uchida, K. Kitazawa, M. Hiroi, M. Sera, N. Kobayashi, In-plane and out-of-plane magnetoresistance in \({\text{ la }}_{2{{-}}{x}}{\text{ sr }}_{{x}}{\text{ cuo }}_{4}\) single crystals. Phys. Rev. B 53, 8733–8742 (1996)ADSCrossRefGoogle Scholar
  50. 50.
    K.H. Bennemann, J.B. Ketterson, in The Physics of Superconductors: Conventional and High-tc Superconductors, Conventional and High-Tc Superconductors (Springer, Heidelberg, 2003)Google Scholar
  51. 51.
    S.D. Obertelli, J.R. Cooper, J.L. Tallon, Systematics in the thermoelectric power of high-\({{t}}_{{c}}\) oxides. Phys. Rev. B 46, 14928–14931 (1992)ADSCrossRefGoogle Scholar
  52. 52.
    Y. Ando, Y. Hanaki, S. Ono, T. Murayama, K. Segawa, N. Miyamoto, S. Komiya, Carrier concentrations in \({\text{ bi }}_{2}{\text{ sr }}_{2{-}z}{\text{ la }}_{z}{\text{ cuo }}_{6+{\delta }}\) single crystals and their relation to the hall coefficient and thermopower. Phys. Rev. B 61, R14956–R14959 (2000)Google Scholar
  53. 53.
    S. Hod, Radiative tail of realistic rotating gravitational collapse. Phys. Rev. Lett. 84, 10–13 (2000)Google Scholar
  54. 54.
    M. Matusiak, K. Rogacki, B.W. Veal, Enhancement of the hall-lorenz number in optimally doped yba \(_{2}cu_{3}o_{7-d}\). EPL 88(4), 47005 (2009)Google Scholar
  55. 55.
    N. Khare, in Handbook of High-Temperature Superconductor Electronics (Dekker, Abingdon, 2003)Google Scholar
  56. 56.
    T. Nakano, N. Momono, M. Oda, M. Ido, Correlation between the doping dependences of superconducting gap magnitude 2 0 and pseudogap temperature t* in high-t c cuprates. J. Phys. Soc. Jpn. 67(8), 2622–2625 (1998)Google Scholar
  57. 57.
    T. Watanabe, T. Fujii, A. Matsuda, Anisotropic resistivities of precisely oxygen controlled single-crystal \({\text{ bi }}_{2}{\text{ sr }}_{2}{\text{ cacu }}_{2}{O}_{8+{{\delta }}}\): Systematic study on "spin gap" effect. Phys. Rev. Lett. 79, 2113–2116 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Mathematical Physics of Fundamental InteractionsUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations