Skip to main content

Yeast and Bacterial Composition in Pot-Pollen Recovered from Meliponini in Colombia: Prospects for a Promising Biological Resource

  • Chapter
  • First Online:
Pot-Pollen in Stingless Bee Melittology

Abstract

Animals have an intimate association with diverse communities of microorganisms, commonly referred to as the microbiome, and bees are no exception. While several studies to date have explored the symbiotic microbial community within the gut of honeybees, little is known of the microbial communities associated with hive-stored pollen and ‘beebread’ of Meliponini. This holds particular interest, as it is believed that the processes of producing honey within beehives is largely dependent on metabolic transformations performed by microbial communities. Since such knowledge pertaining to the microbial role within natural fermentation of pollen has valuable and potential biotechnological applications, the aim of this study is to explore bioactivities and inter-domain microbial communities of the so-called ripe pollen by cataloguing the yeast component using culture-dependent methods and the bacterial components using culture-independent methods. We are reviewing and reporting original results, all from specimens collected in Colombia, about the cumulative antimicrobial activities detected in A. mellifera pollen and T. angustula pot-pollen extracts; the taxonomic composition and comparisons of the microbiomes associated with hive-stored pollen from colonies of A. mellifera, T. angustula and Melipona; and the biochemical and molecular identification of yeasts isolated from beebread of A. mellifera and from pot-pollen of four genera of stingless bees (Meliponini: Scaptotrigona, Plebeia, Paratrigona and T. angustula). This work demonstrates the importance of diversity within the inter-domain microbial communities of Meliponini species and their potential as an untapped resource for biological and/or biotechnological application and biodiversity exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abouda Z, Zerdani I, Kalalou I, Faid MA. 2011. The antibacterial activity of Moroccan Beebread and bee-pollen (dresh and Dried) against Pathogenic Bacteria. Research Journal of Microbiology 64: 376-384.

    Google Scholar 

  • Ahn JH, Hong IP, Bok JI, Kim BY, Song J, Weon HY. 2012. Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea. Journal of Microbiology 50:735–745. doi: 10.1007/s12275-012-2188-0.

    Article  PubMed  Google Scholar 

  • Ambika Manirajan B, Ratering S, Rusch V, Schwiertz A, Geissler-Plaum R, Cardinale M, Schnell S. 2016. Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species-specificity. Environmental Microbiology Sep 9. Epub ahead of print. doi: 10.1111/1462-2920.13524.

    Article  PubMed  Google Scholar 

  • Anderson KE, Carroll MJ, Sheehan TI, Mott BM, Maes P, Corby, Harris V. 2014. Hive-stored pollen of honey bees: Many lines of evidence are consistent with pollen preservation, not nutrient conversion. Molecular Ecology 23:5904–5917. doi: 10.1111/mec.12966.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Association of Official Analytical Chemists (AOAC). 2007. Official Methods of Analysis. 18th. Edition. AOAC; Arlington (TX), USA. 1383 pp.

    Google Scholar 

  • Basim E, Basim H, Özcan M. 2006. Antibacterial activities of Turkish pollen and propolis extracts against plant bacterial pathogens. Journal of Food Engineering 77:992–996. doi: 10.1016/j.jfoodeng.2005.08.027.

    Article  Google Scholar 

  • Bogdanov S. 2004. Quality standards of bee pollen and beeswax. Apiacta 39:334–341.

    Google Scholar 

  • Bottacini F, Milani C, Turroni F, Sánchez B, Foroni E, Duranti S, Serafini F, Viappiani A, Strati F, Ferrarini A, Delledonne M. 2012. Bifidobacterium asteroides PRL2011 Genome Analysis Reveals Clues for Colonization of the Insect Gut. PLoS One 7:1–14. doi: 10.1371/journal.pone.0044229.

    Article  CAS  Google Scholar 

  • Brodschneider R, Crailsheim K. 2010. Nutrition and health in honey bees - Review article. Apidologie 41: 278–294. doi: 10.1051/apido/2010012.

    Article  Google Scholar 

  • Brysch-Herzberg M. 2004. Ecology of yeasts in plant-bumblebee mutualism in Central Europe. FEMS Microbiology Ecology 50: 87–100. doi: 10.1016/j.femsec.2004.06.003.

    Article  PubMed  CAS  Google Scholar 

  • Camargo J, García M, Júnior AC. 1992. Notas previas sobre a bionomia de Ptilotrigona lurida (Hymenoptera, Apidae, Meliponinae). Boletim do Museu Paraense Emilio Goeldi, 8: 391-394.

    Google Scholar 

  • Carpes ST. 2008. Estudo Das Caracteristicas Fisico-Quimicas e Biologicas do Polen Apicola de Apis mellifera L. da regiao sul do Brasil. PhD Thesis, Universidade Federal Do Parana; Curitiba, Brasil. 255 pp.

    Google Scholar 

  • Corby-Harris V, Maes P, Anderson KE. 2014. The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS One. doi: 10.1371/journal.pone.0095056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniel HM, Rosa CA, São Thiago-Calaça PS, Antonini Y, Bastos EM, Evrard P, Huret S, Fidalgo-Jiménez A, Lachance MA. 2013. Starmerella neotropicalis f. a., sp. nov., a yeast species found in bees and pollen. International Journal of Systematic and Evolutionary Microbiology 63:3896–3903. doi: 10.1099/ijs.0.055897-0

    Article  PubMed  CAS  Google Scholar 

  • Donaldson-Matasci MC, DeGrandi-Hoffman G, Dornhaus A. 2013. Bigger is better: Honeybee colonies as distributed information-gathering systems. Animal Behavior 85:585–592. doi: 10.1016/j.anbehav.2012.12.020

    Article  Google Scholar 

  • Douglas G, Sigler L. 2015. Trichosporonoides megachiliensis, a new hyphomycete associated with alfalfa leafcutter bees, with notes on Trichosporonoides and Moniliellag. JSTOR 84: 555–570.

    Google Scholar 

  • Engel P, Kwong WK, McFrederick Q, Anderson KE, Barribeau SM, Chandler JA, Cornman RS, Dainat J, de Miranda JR, Doublet V, Emery O. 2016. The bee microbiome: Impact on bee health and model for evolution and ecology of host-microbe interactions. MBio 7: e02164-15. doi: 10.1128/mBio.02164-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Engel P, Martinson VG, Moran N. 2012. Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences of the United States of America 109: 11002–11007. doi: 10.1073/pnas.1202970109.

    Article  Google Scholar 

  • Gilliam M. 1979. Microbiology of pollen and beebread: the genus Bacillus. Apidologie 10: 269–274. doi: 10.1051/apido:19790304

    Article  Google Scholar 

  • Gilliam M, Prest DB, Lorenz BJ. 1989. Microbiology of pollen and beebread: taxonomy and enzymology of molds. Apidology 20:53–68. doi: 10.1051/apido:19890106

    Article  Google Scholar 

  • Grubbs KJ, Scott JJ, Budsberg KJ, Read H, Balser TC, Currie CR. 2015. Unique honey bee (Apis mellifera) hive component-based communities as detected by a hybrid of phospholipid fatty-acid and fatty-acid methyl ester analyses. PLoS One 10:1–17. doi: 10.1371/journal.pone.0121697

    Article  CAS  Google Scholar 

  • Hydak M. 1970. Honey bee nutrition. Annual Reviews of Entomology. 15: 143-156. doi: 10.1146/annurev.en.15.010170.001043.

    Article  Google Scholar 

  • Herrera CM. 2014. Population growth of the floricolous yeast Metschnikowia reukaufii: effects of nectar host, yeast genotype, and host genotype interaction. FEMS Microbiology Ecology 88: 250–257. doi: 10.1111/1574-6941.12284

    Article  PubMed  CAS  Google Scholar 

  • Herrera CM, Pozo MI, Medrano M. 2013. Yeasts in nectar of an early-blooming herb: sought by bumble bees, detrimental to plant fecundity. Ecology 94: 273–279. doi: 10.1890/12-0595.1

    Article  PubMed  Google Scholar 

  • Higes M, Martín-Hernández R, Garrido-Bailon E, García-Palencia P, Meana A. 2008. Detection of infective Nosema ceranae (Microsporidia) spores in corbicular pollen of forager honeybees. Journal of Invertebrate Pathology 97: 76–78. doi: 10.1016/j.jip.2007.06.002.

    Article  PubMed  Google Scholar 

  • Hong SG, Bae KS, Herzberg M, Titze A, Lachance MA. 2003. Candida kunwiensis sp. nov., a yeast associated with flowers and bumblebees. International Journal of Systematic and Evolutionary Microbiology 53: 367–372. doi: 10.1099/ijs.0.02200-0

    Article  PubMed  CAS  Google Scholar 

  • Kacaniova M, Vuković N, Chlebo R, Haščík P, Rovna K, Cubon J, Dżugan M, Pasternakiewicz A. 2012. The antimicrobial activity of honey, bee pollen loads and beeswax from Slovakia. Archives of Biological Sciences 64: 927–934. doi: 10.2298/ABS1203927K

    Article  Google Scholar 

  • Komosinska-Vassev K, Olczyk P, Kaźmierczak J, Mencner L, Olczyk K. 2015. Bee pollen: chemical composition and therapeutic application. Evidence-Based Complementary and Alternative Medicine 2015:297425.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R. 2011. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Current Protocols in Microbiology. Bioinformatics Chapter 10: Unit 10.7. doi: 10.1002/0471250953.bi1007s36

  • Kwong WK, Engel P, Koch H, Moran NA. 2014. Genomics and host specialization of honey bee and bumble bee gut symbionts. Proceeding of the National Academy of Sciences of the United States of America 111:11509–11514. doi: 10.1073/pnas.1405838111

    Article  CAS  Google Scholar 

  • Kwong WK, Moran NA. 2016. Gut microbial communities of social bees. Nature Reviews Microbiology 14:374–384. doi: 10.1038/nrmicro.2016.43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee FJ, Rusch DB, Stewart FJ, Mattila HR, Newton IL. 2015. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environmental Microbiology 17:796–815. doi: 10.1111/1462-2920.12526

    Article  PubMed  CAS  Google Scholar 

  • Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA. 2011. A simple and distinctive microbiota associated with honey bees and bumble bees. Molecular Ecology 20:619–628. doi: 10.1111/j.1365-294X.2010.04959.x

    Article  PubMed  Google Scholar 

  • McMurdie PJ, Holmes S. 2013. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8: e61217. doi: 10.1371/journal.pone.0061217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Menezes C. 2010. A produção de rainhas ea multiplicação de colônias em Scaptotrigona aff. depilis (Hymenoptera, Apidae, Meliponini). Ph.D. Thesis, University of São Paulo; Ribeirão Preto, Brazil. 97 pp.

    Google Scholar 

  • Mohr KI, Tebbe CC. 2006. Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environmental Microbiology 8: 258-272.

    Article  CAS  PubMed  Google Scholar 

  • Monserrate P. 2015. Valoración in vitro del potencial antimicrobiano de extractos etanólicos de polen de Apis mellifera y de Tetragonisca angustula, en busca de posibles usos terapéuticos. Universidad Nacional de Colombia. Master’s Thesis, Universidad Nacional de Colombia; Bogotá, Colombia. 83 pp.

    Google Scholar 

  • Pimentel MR, Antonini Y, Martins RP, Lachance MA, Rosa CA. 2005. Candida riodocensis and Candida cellae, two new yeast species from the Starmerella clade associated with solitary bees in the Atlantic rain forest of Brazil. FEMS Yeast Research 5: 875–879. doi: 10.1016/j.femsyr.2005.03.006

    Article  PubMed  CAS  Google Scholar 

  • Portillo Carrascal C. 2016. Identificación de levaduras presentes en el proceso de transformación de polen corbicular a pan de abejas por métodos tradicionales y moleculares. Master’s Thesis, Universidad Nacional de Colombia; Bogotá, Colombia. 109 pp.

    Google Scholar 

  • Powell JE, Martinson VG, Urban-Mead K, Moran NA. 2014. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Applied Environmental Microbiology 80: 7378–7387. doi: 10.1128/AEM.01861-14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodríguez G, Chamorro A, Obregón F, Montoya D, Ramírez P, Solarte N. 2011. Guía ilustrada de polen y plantas nativas visitadas por abejas. Universidad Nacional de Colombia; Bogotá, Colombia. 230 pp.

    Google Scholar 

  • Rosa CA, Lachance MA. 2005. Zygosaccharomyces machadoi sp. n., a yeast species isolated from a nest of the stingless bee Tetragonisca angustula. Lundiana 6: 27–29.

    Google Scholar 

  • Rosa CA, Lachance MA, Silva JO, Teixeira AC, Marini MM, Antonini Y, Martins RP. 2003. Yeast communities associated with stingless bees. FEMS Yeast Research 4: 271–275. doi: 10.1016/S1567-1356(03)00173-9

    Article  PubMed  CAS  Google Scholar 

  • Saksinchai S, Suzuki M, Chantawannakul P, Ohkuma M, Lumyong S. 2012. A novel ascosporogenous yeast species, Zygosaccharomyces siamensis, and the sugar tolerant yeasts associated with raw honey collected in Thailand. Fungal Diversity 52: 123–139. doi: 10.1007/s13225-011-0115-z

    Article  Google Scholar 

  • Teixeira AC, Marini MM, Nicoli JR, Antonini Y, Martins RP, Lachance MA, Rosa CA. 2003. Starmerella meliponinorum sp. nov., a novel ascomycetous yeast species associated with stingless bees. International Journal of Systematic and Evolutionary Microbiology 53: 339–343. doi: 10.1099/ijs.0.02262-0

    Article  PubMed  Google Scholar 

  • Thorp RW. 1979. Structural, Behavioral and Physiological Adaptations of Bees (Apoidea) for collecting pollen. JSTOR 66: 788–812.

    Google Scholar 

  • Vásquez A, Olofsson TC. 2009. The lactic acid bacteria involved in the production of bee pollen and beebread. Journal of Apicultural Research 48: 189–195. doi: 10.3896/IBRA.1.48.3.07

    Article  Google Scholar 

  • Vit P, Pulcini P. 1996. Diastase and invertase activities in Meliponini and Trigonini honeys from Venezuela. Journal of Apicultural Research 35: 57–62. doi: 10.1080/00218839.1996.11100913

    Article  CAS  Google Scholar 

  • Vit P, Santiago B, Pedro SRM, Ruíz J, Maza F, Peña-Vera M, Pérez-Pérez E. 2016. Chemical and bioactive characterization of pot-pollen produced by Melipona and Scaptotrigona stingless bees from Paria Grande, Amazonas State, Venezuela. Emirates Journal of Food and Agriculture. 28: 78-84.

    Article  Google Scholar 

  • White TJ, Bruns T, Lee ST. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315-322. In: Innis M, Gelfand D, Sninsky J, White T, eds. PCR Protocols: A guide to methods and applications, Academic Press, San Diego, California, USA, 482 pp.

    Google Scholar 

Download references

Acknowledgements

We would like to thank Universidad Nacional de Colombia, Departamento Administrativo de Ciencia y Tecnología COLCIENCIAS for the financial support, Bee Research Lab (Laboratorio de abejas) Universidad Nacional LABUN for kindly providing the beebread samples from Apis mellifera, the Asociación Apícola Comunera for kindly providing samples of stingless bees and Compañía Campo Colombia SAS for kindly providing us the samples of stingless bees used in this report. We also thank the members of Research Group AYNI ‘Microbiología Veterinaria, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional de Colombia Sede Bogotá’ for the continuous support and excellent technical help. We thank Erika García at Microbiomas Foundation, Colombia, and Nadim Ajami at Baylor College of Medicine, USA, for the excellent support on material preparation and technologies used for culture-independent analyses. We would like to thank the editors, Prof. Dr. Patricia Vit and Dr. David Roubik for their helpful and constructive remarks and the outstanding editorial work, and to Dr. Melissa L. Wos-Oxley for carefully proofreading the text and for her valuable suggestions and corrections which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Junca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Villegas-Plazas, M. et al. (2018). Yeast and Bacterial Composition in Pot-Pollen Recovered from Meliponini in Colombia: Prospects for a Promising Biological Resource. In: Vit, P., Pedro, S., Roubik, D. (eds) Pot-Pollen in Stingless Bee Melittology. Springer, Cham. https://doi.org/10.1007/978-3-319-61839-5_19

Download citation

Publish with us

Policies and ethics