Advertisement

Building Fractals with a Robot Swarm

  • Yu ZhouEmail author
  • Ron Goldman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10386)

Abstract

Fractals are common in nature, and can be used as well for both art and engineering. We classify those fractals that can be represented by line segments into several types: tree-based fractals, curve-based fractals, and space filling fractals. We develop a set of methods to generate fractals with a swarm of robots by using robots as vertices, and line segments between selected robots as edges. We then generalize our algorithms so that new fractals can be built with only a few parameters, and we expand our methods to generate some shape-based fractals.

Keywords

Fractal formation Distributed algorithm Multi-agent path planning Swarm intelligence 

References

  1. 1.
    Abelson, H., DiSessa, A.: Turtle Geometry. MIT Press, Cambridge (1981)zbMATHGoogle Scholar
  2. 2.
    Addison, P.: Fractals and Chaos: An Illustrated Course. Taylor & Francis, Gloucester (1997)CrossRefzbMATHGoogle Scholar
  3. 3.
    Alonso-Mora, J., Breitenmoser, A., Rufli, M., Siegwart, R., Beardsley, P.: Multi-robot system for artistic pattern formation. In: 2011 IEEE International Conference on Robotics and Automation, pp. 4512–4517, May 2011Google Scholar
  4. 4.
    Ashlock, D., Tsang, J.: Evolving fractal art with a directed acyclic graph genetic programming representation. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 2137–2144, May 2015Google Scholar
  5. 5.
    Aznar, F., Pujol, M., Rizo, R.: L-system-driven self-assembly for swarm robotics. In: Lozano, J.A., Gámez, J.A., Moreno, J.A. (eds.) CAEPIA 2011. LNCS, vol. 7023, pp. 303–312. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25274-7_31 CrossRefGoogle Scholar
  6. 6.
    Cantor, G.: Ueber unendliche, lineare punktmannichfaltigkeiten. Math. Ann. 15, 1–7 (1879)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Choudhary, R., Yadav, S., Jain, P., Sharma, M.M.: Full composite fractal antenna with dual band used for wireless applications. In: 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 2517–2520, September 2014Google Scholar
  8. 8.
    Cohen, N.: Fractal antennas and fractal resonators. US Patent 6,452,553, 17 September 2002Google Scholar
  9. 9.
    Degener, B., Kempkes, B., Kling, P., auf der Heide, M.F.: A continuous, local strategy for constructing a short chain of mobile robots. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 168–182. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13284-1_14 CrossRefGoogle Scholar
  10. 10.
    Douady, A., Hubbard, J.: Étude dynamique des polynômes complexes. No. v. 1–2 in Publications mathématiques d’Orsay, Département de Mathématique, Université de Paris-Sud (1984)Google Scholar
  11. 11.
    Dynia, M., Kutylowski, J., auf der Heide, M.F., Schrieb, J.: Local strategies for maintaining a chain of relay stations between an explorer and a base station. In: Proceedings of the Nineteenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 2007, pp. 260–269. ACM, New York (2007)Google Scholar
  12. 12.
    Goldman, R.: An Integrated Introduction to Computer Graphics and Geometric Modeling, 1st edn. CRC Press Inc., Boca Raton (2009)zbMATHGoogle Scholar
  13. 13.
    Guo, H., Meng, Y., Jin, Y.: Swarm robot pattern formation using a morphogenetic multi-cellular based self-organizing algorithm. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3205–3210, May 2011Google Scholar
  14. 14.
    auf der Heide, F.M., Schneider, B.: Local strategies for connecting stations by small robotic networks. In: Hinchey, M., Pagnoni, A., Rammig, F.J., Schmeck, H. (eds.) Biologically-Inspired Collaborative Computing. IFIP – The International Federation for Information Processing, vol. 268. Springer, Boston (2008)Google Scholar
  15. 15.
    Ju, T., Schaefer, S., Goldman, R.: Recursive turtle programs and iterated affine transformations. Comput. Graph. 28(6), 991–1004 (2004)CrossRefGoogle Scholar
  16. 16.
    Kharbanda, M., Bajaj, N.: An exploration of fractal art in fashion design. In: 2013 International Conference on Communication and Signal Processing, pp. 226–230, April 2013Google Scholar
  17. 17.
    Krupke, D., Hemmer, M., McLurkin, J., Zhou, Y., Fekete, S.: A parallel distributed strategy for arraying a scattered robot swarm. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2795–2802, September 2015Google Scholar
  18. 18.
    Kumar, D., Manmohan, Ahmed, S.: Modified ring shaped Sierpinski triangle fractal antenna for c-band and x-band applications. In: 2014 International Conference on Computational Intelligence and Communication Networks, pp. 78–82, November 2014Google Scholar
  19. 19.
    Kutyłowski, J., auf der Heide, F.M.: Optimal strategies for maintaining a chain of relays between an explorer and a base camp. Theor. Comput. Sci. 410(36), 3391–3405 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lee, S.K., Fekete, S.P., McLurkin, J.: Geodesic topological voronoi tessellations in triangulated environments with multi-robot systems. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3858–3865, September 2014Google Scholar
  21. 21.
    Lévy, P.: Les courbes planes ou gauches et les surfaces composées de parties semblables au tout. J. de l’Ecole Polytechnique Série III(7-8), 227–291 (1938). Reprinted in “Oeuvres de Paul Lévy”, vol. II, (Dugué, D., Deheuvels, P., Ibéro, M. (eds.)), pp. 331–394, Gauthier Villars, Paris, Bruxelles and Montréal (1973)Google Scholar
  22. 22.
    Litus, Y., Vaughan, R.: Fall in! sorting a group of robots with a continuous controller. In: 2010 Canadian Conference on Computer and Robot Vision (CRV), pp. 269–276, May 2010Google Scholar
  23. 23.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)CrossRefGoogle Scholar
  24. 24.
    Peiravian, F., Kermanshah, A., Derrible, S.: Spatial data analysis of complex urban systems. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 1–6, October 2014Google Scholar
  25. 25.
    Puente-Baliarda, C., Romeu, J., Pous, R., Cardama, A.: On the behavior of the Sierpinski multiband fractal antenna. IEEE Trans. Antennas Propag. 46(4), 517–524 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Rold, F.D.: Deterministic chaos in mobile robots. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–7, July 2015Google Scholar
  27. 27.
    Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014)CrossRefGoogle Scholar
  28. 28.
    Sankaranarayanan, D., Venkatakiran, D., Mukherjee, B.: Koch snowflake dielectric resonator antenna with periodic circular slots for high gain and wideband applications. In: 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), pp. 1418–1421, August 2016Google Scholar
  29. 29.
    Spears, W.M., Spears, D.F., Hamann, J.C., Heil, R.: Distributed, physics-based control of swarms of vehicles. Auton. Robots 17(2), 137–162 (2004)CrossRefGoogle Scholar
  30. 30.
    Sugawara, K., Watanabe, T.: A study on foraging behavior of simple multi-robot system. In: IEEE 2002 28th Annual Conference of the Industrial Electronics Society, IECON 2002, vol. 4, pp. 3085–3090, November 2002Google Scholar
  31. 31.
    Valiant Designs Limited: The valiant turtle (1983)Google Scholar
  32. 32.
    Xu, S., Yang, J., Wang, Y., Liu, H., Gao, J.: Application of fractal art for the package decoration design. In: 2009 IEEE 10th International Conference on Computer-Aided Industrial Design Conceptual Design, pp. 705–709, November 2009Google Scholar
  33. 33.
    Zhang, J., Zhao, H., Luo, G., Zhou, Y.: The study on fractals of internet router-level topology. In: 2008 The 9th International Conference for Young Computer Scientists, pp. 2743–2747, November 2008Google Scholar
  34. 34.
    Zhou, Y., Goldman, R., McLurkin, J.: An asymmetric distributed method for sorting a robot swarm. IEEE Robot. Autom. Lett. 2(1), 261–268 (2017)CrossRefGoogle Scholar
  35. 35.
    Zhou, Y.: Swarm Robotics: Measurement and Sorting. Master’s thesis, Rice University, Houston, TX, USA (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computer Science DepartmentRice UniversityHoustonUSA

Personalised recommendations