A Novel Strategy to Control Population Diversity and Convergence for Genetic Algorithm

  • Dongyang Li
  • Weian GuoEmail author
  • Yanfen Mao
  • Lei Wang
  • Qidi Wu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10385)


Genetic algorithm (GA), an efficient evolutionary algorithm inspired from the science of genetics, attracts the worldwide attention for several decades. This paper tries to strengthen the search ability of the population in GA in the way of improving the distance among individuals by introducing a new solution updating strategy based on the theory of Cooperative Game. The simulation is done using fourteen benchmark functions, and the results demonstrate that this modified genetic algorithm works efficiently.


GA Solution distance Cooperative game Solution updating strategy 


  1. 1.
    Holland, J.H.: Adaptation in Natural and Artificial Systems, pp. 211–247. MIT Press, Cambridge (1975)Google Scholar
  2. 2.
    Peteghem, V.V., Vanhoucke, M.: A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. Eur. J. Oper. Res. 201(2), 409–418 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Zhang, G., Gao, L., Shi, Y.: An effective genetic algorithm for the flexible job-shop scheduling problem. ACM Trans. Intell. Syst. Technol. 38(4), 3563–3573 (2011)Google Scholar
  4. 4.
    Vidal, T., Crainic, T.G., Gendreau, M., et al.: A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows. Comput. Oper. Res. 40(40), 475–489 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Castro, J.L.D., Soma, N.Y.: A constructive hybrid genetic algorithm for the flowshop scheduling problem. Int. J. Comput. Sci. Netw. Secur. 9, 219–223 (2013)Google Scholar
  6. 6.
    Arabas, J., Michalewicz, Z., Mulawka, J.: GAVaPS - a genetic algorithm with varying population size. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, vol. 1, pp. 73–78. IEEE Xplore (1994)Google Scholar
  7. 7.
    Liu, H., Zhong, F., Ouyang, B., et al.: An approach for QoS-aware web service composition based on improved genetic algorithm. In: International Conference on Web Information Systems and Mining, pp. 123–128. IEEE Xplore (2010)Google Scholar
  8. 8.
    Tsai, C.C., Huang, H.C., Chan, C.K.: Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation. IEEE Trans. Industr. Electron. 58(10), 4813–4821 (2011)CrossRefGoogle Scholar
  9. 9.
    Wang, L., Haikun, T., Yu, G.: A hybrid genetic algorithm for job-shop scheduling problem, pp. 271–274 (2015)Google Scholar
  10. 10.
    Tang, M., Pan, S.: A hybrid genetic algorithm for the energy-efficient virtual machine placement problem in data centers. Neural Process. Lett. 41(2), 211–221 (2015)CrossRefGoogle Scholar
  11. 11.
    Rowland, E.: Theory of Games and Economic Behavior. Theory of games and economic behavior, pp. 2–14. Princeton University Press (1944)Google Scholar
  12. 12.
    Back, T.: Evolutionary Algorithms in Theory and Pratice. Oxford University Press, Oxford (1996)Google Scholar
  13. 13.
    Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3, 82–102 (1999)CrossRefGoogle Scholar
  14. 14.
    Cai, Z., Wang, Y.: A multiobjective optimization-based evolutionary algorithm for constrained optimization. IEEE Trans. Evol. Comput. 10, 658–675 (2006)CrossRefGoogle Scholar
  15. 15.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, New York (1992)CrossRefzbMATHGoogle Scholar
  16. 16.
    Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  17. 17.
    Parmee, I.: Evolutionary and Adaptive Computing in Engineering Design. Springer, New York (2001)CrossRefGoogle Scholar
  18. 18.
    Onwubolu, G., Babu, B.: New Optimization Techniques in Engineering. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  19. 19.
    Eberhart, R., Shi, Y., Kennedy, J.: Swarm Intelligence. Morgan Kaufmann, San Mateo (2001)Google Scholar
  20. 20.
    Clerc, M.: Particle Swarm Optimization. ISTE Publishing, Amsterdam (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  22. 22.
    Dorigo, M., Gambardella, L., Middendorf, M., Stutzle, T.: Special section on ‘ant colony optimization’. IEEE Trans. Evol. Comput. 6(4), 317–365 (2002)CrossRefGoogle Scholar
  23. 23.
    Guo, W., Wang, L., Ge, S.S., Ren, H., Mao, Y.: Drift analysis of mutation operations for biogeography-based optimization. Soft Comput. 19, 1881–1892 (2015)CrossRefzbMATHGoogle Scholar
  24. 24.
    Li, D., Wang, L., et al.: Particle swarm optimization-based solution updating strategy for biogeography-based optimization. In: IEEE Congress on Evolutionary Computation (CEC), pp. 455–459 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dongyang Li
    • 1
  • Weian Guo
    • 2
    Email author
  • Yanfen Mao
    • 2
  • Lei Wang
    • 1
  • Qidi Wu
    • 1
  1. 1.School of Infomation and Electronical InformationTongji UniversityShanghaiChina
  2. 2.Sino-German College of Applied SciencesTongji UniversityShanghaiChina

Personalised recommendations