Optimization of Office-Space Allocation Problem Using Artificial Bee Colony Algorithm

  • Asaju La’aro BolajiEmail author
  • Ikechi Michael
  • Peter Bamidele Shola
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10385)


Office-space allocation (OFA) problem is a class of complex optimization problems that distributes a set of limited entities to a set of resources subject to satisfying set of constraints. Due to the complexity of OFA, numerous metaheuristic-based techniques have been proposed. Artificial Bee Colony (ABC) algorithm is a swarm intelligence, metaheuristic techniques that have been utilized successfully to solve several formulations of university timetabling problems. This paper presents an adaptation of ABC algorithm for solving OFA problem. The adaptation process involves integration of three neighbourhood operators with the components of the ABC algorithm in order to cope with rugged search space of the OFA. The benchmark instances established by University of Nottingham namely Nothingham dataset is used in the evaluation of the proposed ABC algorithm. Interestingly, the ABC is able to produced high quality solution by obtaining two new results, one best results and competitive results in comparison with the state-of-the-art methods.


Artificial Bee Colony Timetabling problem Office space allocation Nature-inspired computing 


  1. 1.
    McCollum, B.: A perspective on bridging the gap between theory and practice in university timetabling. In: Burke, E.K., Rudová, H. (eds.) PATAT 2006. LNCS, vol. 3867, pp. 3–23. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-77345-0_1 CrossRefGoogle Scholar
  2. 2.
    Ritzman, L., Bradford, J., Jacobs, R.: A multiple objective approach to space planning for academic facilities. Manag. Sci. 25(9), 895–906 (1979)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Benjamin, C.O., Ehie, I.C., Omurtag, Y.: Planning facilities at the university of missouri-rolla. Interfaces 22(4), 95–105 (1992)CrossRefGoogle Scholar
  4. 4.
    Ülker, Ö., Landa-Silva, D.: A 0/1 integer programming model for the office space allocation problem. Electron. Notes Discrete Math. 36, 575–582 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Burke, E.K., Cowling, P., Landa Silva, J.D., McCollum, B.: Three methods to automate the space allocation process in UK universities. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 254–273. Springer, Heidelberg (2001). doi: 10.1007/3-540-44629-X_16 CrossRefGoogle Scholar
  6. 6.
    Lopes, R., Girimonte, D.: The office-space-allocation problem in strongly hierarchized organizations. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 143–153. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12139-5_13 CrossRefGoogle Scholar
  7. 7.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ülker, Ö., Landa-Silva, D.: Evolutionary local search for solving the office space allocation problem. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)Google Scholar
  9. 9.
    Awadallah, M.A., Khader, A.T., Al-Betar, M.A., Woon, P.C.: Office-space-allocation problem using harmony search algorithm. In: Neural Information Processing, Springer 365–374(2012)Google Scholar
  10. 10.
    Burke, E.K., Silva, J.D.L., Soubeiga, E.: Multi-objective hyper-heuristic approaches for space allocation and timetabling. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers, vol. 32, pp. 129–158. Springer US, New York (2005). doi: 10.1007/0-387-25383-1_6 CrossRefGoogle Scholar
  11. 11.
    Burke, E., Cowling, P., Silva, J.L.: Hybrid population-based metaheuristic approaches for the space allocation problem. In: Proceedings of the 2001 Congress on Evolutionary Computation, 2001, vol. 1, 232–239. IEEE (2001)Google Scholar
  12. 12.
    Burke, E., Cowling, P., Landa Silva, J., Petrovic, S.: Combining hybrid metaheuristics and populations for the multiobjective optimisation of space allocation problems. In: Proceedings of the 2001 Genetic and Evolutionary Computation Conference (GECCO 2001), 1252–1259 (2001)Google Scholar
  13. 13.
    Bolaji, A.L., Khader, A.T., Al-Betar, M.A., Awadallah, M.A.: University course timetabling using hybridized artificial bee colony with hill climbing optimizer. J. Comput. Sci. 5(5), 809–818 (2014)CrossRefGoogle Scholar
  14. 14.
    Bolaji, A.L., Khader, A.T., Al-Betar, M.A., Awadallah, M.A.: A hybrid nature-inspired artificial bee colony algorithm for uncapacitated examination timetabling problems. J. Intell. Syst. 24(1), 37–54 (2015)Google Scholar
  15. 15.
    Awadallah, M.A., Bolaji, A.L., Al-Betar, M.A.: A hybrid artificial bee colony for a nurse rostering problem. Appl. Soft Comput. 35, 726–739 (2015)CrossRefGoogle Scholar
  16. 16.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report TR06, Erciyes University Press, Erciyes (2005)Google Scholar
  17. 17.
    Bolaji, A.L., Khader, A.T., Al-Betar, M.A., Awadallah, M.A.: Artificial bee colony, its variants and applications: a survey. J. Theor. Appl. Inform. Technol. (JATIT) 47(2), 434–459 (2013)Google Scholar
  18. 18.
    Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42, 21–57 (2012)CrossRefGoogle Scholar
  19. 19.
    Corne, D., Ross, P.: Peckish initialisation strategies for evolutionary timetabling. In: Burke, E., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 227–240. Springer, Heidelberg (1996). doi: 10.1007/3-540-61794-9_62 CrossRefGoogle Scholar
  20. 20.
    Bolaji, A.L., Khader, A.T., Al-Betar, M.A., Awadallah, M.A.: Artificial bee colony algorithm for solving educational timetabling problems. Int. J. Natural Comput. Res. 3(2), 1–21 (2012)CrossRefGoogle Scholar
  21. 21.
    Landa-Silva, D., Burke, E.K.: Asynchronous cooperative local search for the office-space-allocation problem. INFORMS J. Comput. 19(4), 575–587 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Asaju La’aro Bolaji
    • 1
    Email author
  • Ikechi Michael
    • 2
  • Peter Bamidele Shola
    • 3
  1. 1.Department of Computer Science, Faculty of Pure and Applied SciencesFederal University WukariWukariNigeria
  2. 2.VConnect Global Services LimitedLagosNigeria
  3. 3.Department of Computer ScienceUniversity of IlorinIlorinNigeria

Personalised recommendations