Advertisement

Decentralized Congestion Control in Random Ant Interaction Networks

  • Andreas KasprzokEmail author
  • Beshah Ayalew
  • Chad Lau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10385)

Abstract

Interaction networks formed by foraging ants are among the most studied self-organizing multi-agent systems in nature that have inspired many practical applications. However, the vast majority of prior investigations assume pheromone trails or stigmergic strategies used by the ants to create foraging behaviors. We first review an ant network model where the direction and speed of each ant’s correlated random walk are influenced by direct and minimalist interactions, such as antennal contact. We incorporate basic ant memory with nest and food compasses, and adopt a discrete time, non-deterministic forager recruitment strategy to regulate the foraging population. The paper’s main focus is on decentralized congestion control and avoidance schemes that are activated with a quorum sensing mechanism. The model relies on individual ants’ ability to estimate a perceived avoidance sector from recent interactions. Through simulation experiments it is shown that a randomized congestion avoidance scheme improves performance over alternative static schemes.

References

  1. 1.
    Codling, E.A.: Biased random walks in biology. Ph.D. thesis, The University of Leeds (2003)Google Scholar
  2. 2.
    Deneubourg, J.L., Goss, S.: Collective patterns and decision-making. Ethol. Ecol. Evol. 1(4), 295–311 (1989)CrossRefGoogle Scholar
  3. 3.
    Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano, Italy (1992)Google Scholar
  4. 4.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Book, Bingley (2004)zbMATHGoogle Scholar
  5. 5.
    Downs, A.: The law of peak-hour expressway congestion. Traffic Q. 16(3), 393–409 (1962)Google Scholar
  6. 6.
    Fink, G.A., Haack, J.N., McKinnon, A.D., Fulp, E.W.: Defense on the move: ant-based cyber defense. IEEE Secur. Priv. 12(2), 36–43 (2014)CrossRefGoogle Scholar
  7. 7.
    Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw. 1(4), 397–413 (1993)CrossRefGoogle Scholar
  8. 8.
    Franks, N.R., Stuttard, J.P., Doran, C., Esposito, J.C., Master, M.C., Sendova-Franks, A.B., Masuda, N., Britton, N.F.: How ants use quorum sensing to estimate the average quality of a fluctuating resource. Sci. Rep. 5 (2015). Article no. 11890. doi: 10.1038/srep11890
  9. 9.
    Gordon, D.M., Paul, R.E., Thorpe, K.: What is the function of encounter patterns in ant colonies? Anim. Behav. 45(6), 1083–1100 (1993)CrossRefGoogle Scholar
  10. 10.
    Gordon, D.: Ant Encounters: Interaction Networks and Colony Behavior. Primers in Complex Systems. Princeton University Press, Princeton (2010)CrossRefGoogle Scholar
  11. 11.
    Hamar, J., Dove, R.: Quorum sensing in multi-agent systems. INSIGHT 15(2), 35–37 (2012)CrossRefGoogle Scholar
  12. 12.
    Kasprzok, A., Ayalew, B., Lau, C.: A microscopic model for multi-agent interaction networks without stigmergy. Swarm Intelligence (2016, under review)Google Scholar
  13. 13.
    Leitão, P., Barbosa, J., Trentesaux, D.: Bio-inspired multi-agent systems for reconfigurable manufacturing systems. Eng. Appl. Artif. Intell. 25(5), 934–944 (2012)CrossRefGoogle Scholar
  14. 14.
    Liu, X., Zhou, P., Wang, R.: Small RNA-mediated switch-like regulation in bacterial quorum sensing. IET Syst. Biol. 7(5), 182–187 (2013)CrossRefGoogle Scholar
  15. 15.
    Prabhakar, B., Dektar, K.N., Gordon, D.M.: Anternet: the regulation of harvester ant foraging and internet congestion control. In: 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1355–1359 (2012). iD: 1Google Scholar
  16. 16.
    Pratt, S.C.: Quorum sensing by encounter rates in the ant temnothorax albipennis. Behav. Ecol. 16(2), 488–496 (2005)CrossRefGoogle Scholar
  17. 17.
    Pratt, S.C., Mallon, E.B., Sumpter, D.J., Franks, N.R.: Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant leptothorax albipennis. Behav. Ecol. Sociobiol. 52(2), 117–127 (2002)CrossRefGoogle Scholar
  18. 18.
    Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-30552-1_2 CrossRefGoogle Scholar
  19. 19.
    Seeley, T.D., Visscher, P.K.: Quorum sensing during nest-site selection by honeybee swarms. Behav. Ecol. Sociobiol. 56(6), 594–601 (2004)CrossRefGoogle Scholar
  20. 20.
    Shmygelska, A., Aguirre-Hernández, R., Hoos, H.H.: An ant colony optimization algorithm for the 2D HP protein folding problem. In: Dorigo, M., Caro, G., Sampels, M. (eds.) ANTS 2002. LNCS, vol. 2463, pp. 40–52. Springer, Heidelberg (2002). doi: 10.1007/3-540-45724-0_4 CrossRefGoogle Scholar
  21. 21.
    Stützle, T., Dorigo, M.: ACO algorithms for the traveling salesman problem. In: Evolutionary Algorithms in Engineering and Computer Science, pp. 163–183 (1999). ISBN: 0471999024Google Scholar
  22. 22.
    Tian, Y.P., Liu, C.L.: Consensus of multi-agent systems with diverse input and communication delays. IEEE Trans. Autom. Control 53(9), 2122–2128 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wohlgemuth, S., Ronacher, B., Wehner, R.: Ant odometry in the third dimension. Nature 411(6839), 795–798 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Clemson University International Center for Automotive ResearchGreenvilleUSA
  2. 2.Harris CorporationPalm BayUSA

Personalised recommendations