Advertisement

Particle Swarm Optimization for the Machine Repair Problem with Working Breakdowns

  • Kuo-Hsiung Wang
  • Cheng-Dar LiouEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10385)

Abstract

This paper studies the M/M/1 machine repair problem using a single service station subject to working breakdowns. This service station can be in working breakdown state only when at least one failed machine exists in the system. The matrix-analytic method is used to compute the steady-state probabilities for the number of failed machines in the system. A cost model is constructed to simultaneously determine the optimal values for the number of operating machines and two variable service rates to minimize the total expected cost per machine per unit time. The particle swarm optimization (PSO) algorithm is implemented to search for the optimal minimum value until the system availability constraint is satisfied.

Keywords

Machine repair problem Working breakdown Particle swarm optimization 

References

  1. 1.
    Servi, L.D., Finn, S.G.: M/M/1 queue with working vacation (M/M/1/WV). Perform. Eval. 50, 41–52 (2002)CrossRefGoogle Scholar
  2. 2.
    Kalidass, K., Kasturi, R.: A queue with working breakdowns. Comput. Ind. Eng. 63, 779–783 (2012)CrossRefGoogle Scholar
  3. 3.
    Wang, K.H.: Profit analysis of the machine repair problem with a single service station subject to breakdowns. J. Oper. Res. Soc. 41, 1153–1160 (1990)CrossRefzbMATHGoogle Scholar
  4. 4.
    Wang, K.H., Kuo, M.Y.: Profit analysis of the M/Ek/1 machine repair problem with a non-reliable service station. Comput. Ind. Eng. 32, 587–594 (1997)CrossRefGoogle Scholar
  5. 5.
    Wang, K.H.: Profit analysis of the M/M/R machine repair problem with spares and server breakdowns. J. Oper. Res. Soc. 45, 539–548 (1994)CrossRefzbMATHGoogle Scholar
  6. 6.
    Wang, K.H., Sivazlian, B.D.: Cost analysis of the M/M/R machine repair problem with spares operating under variable service rates. Microelectron. Reliab. 32, 1171–1183 (1992)CrossRefGoogle Scholar
  7. 7.
    Ke, J.C., Wang, K.H.: Cost analysis of the M/M/R machine repair problem with balking, reneging, and server breakdowns. J. Oper. Res. Soc. 50, 275–282 (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Kim, B.K., Lee, D.H.: The M/G/1 queue with disasters and working breakdown. Appl. Math. Model. 38, 1788–1798 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Liou, C.D.: Markovian queue optimization analysis with an unreliable server subject to working breakdowns and impatient customers. Int. J. Syst. Sci. 46(12), 2165–2182 (2015)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)Google Scholar
  11. 11.
    Clerc, M.: Particle Swarm Optimization (International Scientific and Technical Encyclopedia). Wiley_ISTE, London (2006)CrossRefGoogle Scholar
  12. 12.
    Alrashidi, M.R., EL-hawary, M.E.: A survey of particle swarm optimization applications in power system operations. Electr. Power Compon. Syst. 34, 1349–1357 (2006)CrossRefGoogle Scholar
  13. 13.
    Neuts, M.F.: Matrix Geometric Solutions in Stochastic Models: An Algorithmic Approach. The John Hopkins University Press, Baltimore (1981)zbMATHGoogle Scholar
  14. 14.
    Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998). doi: 10.1007/BFb0040810 CrossRefGoogle Scholar
  15. 15.
    Yoshida, H., Kawata, K., Fukuyama, Y., Nakanishi, Y.: A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans. Power Syst. 15, 1232–1239 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer Science and Information ManagementProvidence UniversityTaichungTaiwan
  2. 2.Department of Business AdministrationNational Formosa UniversityHuweiTaiwan, ROC

Personalised recommendations