Solving Inverse Kinematics with Vector Evaluated Particle Swarm Optimization

  • Zühnja Riekert
  • Mardé HelbigEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10385)


Inverse kinematics (IK) is an optimization problem solving the path or trajectory a multi-jointed body should take for an extremity to reach a specified target location. When also considering the flow of movement, IK becomes a multi-objective optimization problem (MOP). This study proposes the use of the vector evaluated particle swarm optimization (VEPSO) algorithm to solve IK. A 3D character arm, with 7 degrees of freedom, is used during experimentation. VEPSO’s results are compared to single-objective optimizers, as well as an optimizer that uses weighted aggregation to solve MOPs. Results show that the weighted aggregation approach can outperform IK-VEPSO if the correct weight combination (that is problem dependent) has been selected. However, IK-VEPSO produces a set of possible solutions.


  1. 1.
    Bingul, Z., Ertunc, H.M., Oysu, C.: Comparison of inverse kinematics solutions using neural network for 6R robot manipulator with offset. In: Proceedings of ICSC Congress on Computational Intelligence Methods and Applications (2005)Google Scholar
  2. 2.
    Boulic, R., Huang, Z., Thalmann, D.: A comparison of design strategies for 3D human motions. In: Varghese, K., Pfleger, S. (eds.) Human Comfort and Security of Information Systems, pp. 306–319. Springer, Heidelberg (1997). doi: 10.1007/978-3-642-60665-6_28 CrossRefGoogle Scholar
  3. 3.
    Boulic, R., Mas, R.: Hierarchical kinematics behaviors for complex articulated figures. Interactive Computer Animation. Prentice Hall, Upper Saddle River (1996)Google Scholar
  4. 4.
    Buss, S.R.: Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. IEEE J. Robot. Autom. 17(1–19), 16 (2004)Google Scholar
  5. 5.
    Çavdar, T., Mohammad, M., Milani, R.A.: A new heuristic approach for inverse kinematics of robot arms. Adv. Sci. Lett. 19(1), 329–333 (2013)CrossRefGoogle Scholar
  6. 6.
    Cortes, O.A.C., Rau-Chaplin, A., Wilson, D., Cook, I., Gaiser-Porter, J.: A study of VEPSO approaches for multiobjective real world applications. In: Proceedings of the International Conference on Data Analytics, pp. 42–48 (August 2014)Google Scholar
  7. 7.
    Deutscher, J., Davison, A., Reid, I.: Automatic partitioning of high dimensional search spaces associated with articulated body motion capture. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. vol. 2, pp. 669–676 (2001)Google Scholar
  8. 8.
    Dibblee, D., Maltese, J., Ombuki-Berman, B.M., Engelbrecht, A.P.: Vector-evaluated particle swarm optimization with local search. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 187–195 (May 2015)Google Scholar
  9. 9.
    Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. Neuroscience 5(7), 1688–1703 (1985)Google Scholar
  10. 10.
    Heppner, F., Grenander, U.: A stochastic nonlinear model for coordinated bird flocks. In: Krasner, E. (ed.) The ubiquity of chaos, pp. 233–238. AAAS Publications (1990)Google Scholar
  11. 11.
    Huang, H.C., Chen, C.P., Wang, P.R.: Particle swarm optimization for solving the inverse kinematics of 7-DOF robotic manipulators. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 3105–3110 (October 2012)Google Scholar
  12. 12.
    Jin, Y., Olhofer, M., Sendhoff, B.: Dynamic weighted aggregation for evolutionary multi-objective optimization: why does it work and how?. In: Proceedings of the Annual Conference on Genetic and Evolutionary Computation, pp. 1042–1049. San Francisco, USA (July 2001)Google Scholar
  13. 13.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (November 1995)Google Scholar
  14. 14.
    Lasseter, J.: Principles of traditional animation applied to 3D computer animation. Seminal Graphics, pp. 263–272. ACM, New York (1998)Google Scholar
  15. 15.
    Maltese, J., Ombuki-Berman, B., Engelbrecht, A.: Co-operative vector-evaluated particle swarm optimization for multi-objective optimization. In: Proceedings of the IEEE Symposium Series on Computational Intelligence, pp. 1294–1301 (December 2015)Google Scholar
  16. 16.
    Matthysen, W., Engelbrecht, A., Malan, K.: Analysis of stagnation behavior of vector evaluated particle swarm optimization. In: Proceedings of the IEEE Symposium on Swarm Intelligence, pp. 155–163 (April 2013)Google Scholar
  17. 17.
    Mohamad, M.M., Taylor, N.K., Dunnigan, M.W.: Articulated robot motion planning using ant colony optimisation. In: Proceedings of the International IEEE Conference Intelligent Systems, pp. 690–695 (September 2006)Google Scholar
  18. 18.
    Mori, M., MacDorman, K.F., Kageki, N.: The uncanny valley [from the field]. IEEE Robot. Autom. Mag. 19(2), 98–100 (2012)CrossRefGoogle Scholar
  19. 19.
    Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method in multiobjective problems. In: Proceedings of the ACM Symposium on Applied Computing SAC 2002, pp. 603–607. ACM, New York (2002)Google Scholar
  20. 20.
    Parsopoulos, K.E., Tasoulis, D.K., Vrahatis, M.N., et al.: Multiobjective optimization using parallel vector evaluated particle swarm optimization. In: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, vol. 2, pp. 823–828 (2004)Google Scholar
  21. 21.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)CrossRefGoogle Scholar
  22. 22.
    Repository, B.D.M.: Teenage girl model., Accessed 9 Jan 2017
  23. 23.
    Rokbani, N., Alimi, M.A., Ammar, B.: Architectural proposal for a robotized intelligent humanoid, IZiman. In: Proceedings of the IEEE International Conference on Automation and Logistics, pp. 1941–1946 (August 2007)Google Scholar
  24. 24.
    Rokbani, N., Benbousaada, E., Ammar, B., Alimi, A.M.: Biped robot control using particle swarm optimization. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 506–512 (October 2010)Google Scholar
  25. 25.
    Rokbani, N., Alimi, A.M.: Inverse kinematics using particle swarm optimization, a statistical analysis. Proc. Eng. 64, 1602–1611 (2013)CrossRefGoogle Scholar
  26. 26.
    Rokbani, N., Casals, A., Alimi, A.M.: IK-FA, a new heuristic inverse kinematics solver using firefly algorithm. In: Azar, A.T., Vaidyanathan, S. (eds.) Computational Intelligence Applications in Modeling and Control, pp. 369–395. Springer International Publishing, Cham (2015). doi: 10.1007/978-3-319-11017-2_15 Google Scholar
  27. 27.
    Rutkowski, L., Przybyl, A., Cpalka, K.: Novel online speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Trans. Industr. Electron. 59(2), 1238–1247 (2012)CrossRefGoogle Scholar
  28. 28.
    Sakchaicharoenkul, T.: MCFI-based animation tweening algorithm for 2D parametric motion flow/optical flow. MG&V 15(1), 29–49 (2006)Google Scholar
  29. 29.
    Tanskanen, E.: Transition synthesis for skeletal animations using optimization and simulated physics. G2 pro gradu, diplomity, Aalto University, 03 November 2014Google Scholar
  30. 30.
    Tevatia, G., Schaal, S.: Inverse kinematics for humanoid robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 294–299 (2000)Google Scholar
  31. 31.
    Uno, Y., Kawato, M., Suzuki, R.: Formation of optimum trajectory in control of arm movement: minimum torque-change model. Japan IEICE Technical Report MBE86-79, pp. 9–16 (1987)Google Scholar
  32. 32.
    Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement. Biol. Cybern. 61(2), 89–101 (1989)CrossRefGoogle Scholar
  33. 33.
    Wampler, K., Andersen, E., Herbst, E., Lee, Y., Popović, Z.: Character animation in two-player adversarial games. ACM Trans. Graph. 29(3), 1–13 (2010)CrossRefGoogle Scholar
  34. 34.
    Whitney, D.E.: Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man-Mach. Syst. 10(2), 47–53 (1969)CrossRefGoogle Scholar
  35. 35.
    Yang, Y., Peng, G., Wang, Y., Zhang, H.: A new solution for inverse kinematics of 7-DOF manipulator based on genetic algorithm. In: Proceedings of the IEEE International Conference on Automation and Logistics, pp. 1947–1951, August 2007Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of PretoriaPretoriaSouth Africa

Personalised recommendations