Advertisement

Solving Inverse Kinematics with Vector Evaluated Particle Swarm Optimization

  • Zühnja Riekert
  • Mardé HelbigEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10385)

Abstract

Inverse kinematics (IK) is an optimization problem solving the path or trajectory a multi-jointed body should take for an extremity to reach a specified target location. When also considering the flow of movement, IK becomes a multi-objective optimization problem (MOP). This study proposes the use of the vector evaluated particle swarm optimization (VEPSO) algorithm to solve IK. A 3D character arm, with 7 degrees of freedom, is used during experimentation. VEPSO’s results are compared to single-objective optimizers, as well as an optimizer that uses weighted aggregation to solve MOPs. Results show that the weighted aggregation approach can outperform IK-VEPSO if the correct weight combination (that is problem dependent) has been selected. However, IK-VEPSO produces a set of possible solutions.

References

  1. 1.
    Bingul, Z., Ertunc, H.M., Oysu, C.: Comparison of inverse kinematics solutions using neural network for 6R robot manipulator with offset. In: Proceedings of ICSC Congress on Computational Intelligence Methods and Applications (2005)Google Scholar
  2. 2.
    Boulic, R., Huang, Z., Thalmann, D.: A comparison of design strategies for 3D human motions. In: Varghese, K., Pfleger, S. (eds.) Human Comfort and Security of Information Systems, pp. 306–319. Springer, Heidelberg (1997). doi: 10.1007/978-3-642-60665-6_28 CrossRefGoogle Scholar
  3. 3.
    Boulic, R., Mas, R.: Hierarchical kinematics behaviors for complex articulated figures. Interactive Computer Animation. Prentice Hall, Upper Saddle River (1996)Google Scholar
  4. 4.
    Buss, S.R.: Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. IEEE J. Robot. Autom. 17(1–19), 16 (2004)Google Scholar
  5. 5.
    Çavdar, T., Mohammad, M., Milani, R.A.: A new heuristic approach for inverse kinematics of robot arms. Adv. Sci. Lett. 19(1), 329–333 (2013)CrossRefGoogle Scholar
  6. 6.
    Cortes, O.A.C., Rau-Chaplin, A., Wilson, D., Cook, I., Gaiser-Porter, J.: A study of VEPSO approaches for multiobjective real world applications. In: Proceedings of the International Conference on Data Analytics, pp. 42–48 (August 2014)Google Scholar
  7. 7.
    Deutscher, J., Davison, A., Reid, I.: Automatic partitioning of high dimensional search spaces associated with articulated body motion capture. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. vol. 2, pp. 669–676 (2001)Google Scholar
  8. 8.
    Dibblee, D., Maltese, J., Ombuki-Berman, B.M., Engelbrecht, A.P.: Vector-evaluated particle swarm optimization with local search. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 187–195 (May 2015)Google Scholar
  9. 9.
    Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. Neuroscience 5(7), 1688–1703 (1985)Google Scholar
  10. 10.
    Heppner, F., Grenander, U.: A stochastic nonlinear model for coordinated bird flocks. In: Krasner, E. (ed.) The ubiquity of chaos, pp. 233–238. AAAS Publications (1990)Google Scholar
  11. 11.
    Huang, H.C., Chen, C.P., Wang, P.R.: Particle swarm optimization for solving the inverse kinematics of 7-DOF robotic manipulators. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 3105–3110 (October 2012)Google Scholar
  12. 12.
    Jin, Y., Olhofer, M., Sendhoff, B.: Dynamic weighted aggregation for evolutionary multi-objective optimization: why does it work and how?. In: Proceedings of the Annual Conference on Genetic and Evolutionary Computation, pp. 1042–1049. San Francisco, USA (July 2001)Google Scholar
  13. 13.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (November 1995)Google Scholar
  14. 14.
    Lasseter, J.: Principles of traditional animation applied to 3D computer animation. Seminal Graphics, pp. 263–272. ACM, New York (1998)Google Scholar
  15. 15.
    Maltese, J., Ombuki-Berman, B., Engelbrecht, A.: Co-operative vector-evaluated particle swarm optimization for multi-objective optimization. In: Proceedings of the IEEE Symposium Series on Computational Intelligence, pp. 1294–1301 (December 2015)Google Scholar
  16. 16.
    Matthysen, W., Engelbrecht, A., Malan, K.: Analysis of stagnation behavior of vector evaluated particle swarm optimization. In: Proceedings of the IEEE Symposium on Swarm Intelligence, pp. 155–163 (April 2013)Google Scholar
  17. 17.
    Mohamad, M.M., Taylor, N.K., Dunnigan, M.W.: Articulated robot motion planning using ant colony optimisation. In: Proceedings of the International IEEE Conference Intelligent Systems, pp. 690–695 (September 2006)Google Scholar
  18. 18.
    Mori, M., MacDorman, K.F., Kageki, N.: The uncanny valley [from the field]. IEEE Robot. Autom. Mag. 19(2), 98–100 (2012)CrossRefGoogle Scholar
  19. 19.
    Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method in multiobjective problems. In: Proceedings of the ACM Symposium on Applied Computing SAC 2002, pp. 603–607. ACM, New York (2002)Google Scholar
  20. 20.
    Parsopoulos, K.E., Tasoulis, D.K., Vrahatis, M.N., et al.: Multiobjective optimization using parallel vector evaluated particle swarm optimization. In: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, vol. 2, pp. 823–828 (2004)Google Scholar
  21. 21.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)CrossRefGoogle Scholar
  22. 22.
    Repository, B.D.M.: Teenage girl model. https://www.blender-models.com/model-downloads/humans/id/teenage-girl-model, Accessed 9 Jan 2017
  23. 23.
    Rokbani, N., Alimi, M.A., Ammar, B.: Architectural proposal for a robotized intelligent humanoid, IZiman. In: Proceedings of the IEEE International Conference on Automation and Logistics, pp. 1941–1946 (August 2007)Google Scholar
  24. 24.
    Rokbani, N., Benbousaada, E., Ammar, B., Alimi, A.M.: Biped robot control using particle swarm optimization. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 506–512 (October 2010)Google Scholar
  25. 25.
    Rokbani, N., Alimi, A.M.: Inverse kinematics using particle swarm optimization, a statistical analysis. Proc. Eng. 64, 1602–1611 (2013)CrossRefGoogle Scholar
  26. 26.
    Rokbani, N., Casals, A., Alimi, A.M.: IK-FA, a new heuristic inverse kinematics solver using firefly algorithm. In: Azar, A.T., Vaidyanathan, S. (eds.) Computational Intelligence Applications in Modeling and Control, pp. 369–395. Springer International Publishing, Cham (2015). doi: 10.1007/978-3-319-11017-2_15 Google Scholar
  27. 27.
    Rutkowski, L., Przybyl, A., Cpalka, K.: Novel online speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Trans. Industr. Electron. 59(2), 1238–1247 (2012)CrossRefGoogle Scholar
  28. 28.
    Sakchaicharoenkul, T.: MCFI-based animation tweening algorithm for 2D parametric motion flow/optical flow. MG&V 15(1), 29–49 (2006)Google Scholar
  29. 29.
    Tanskanen, E.: Transition synthesis for skeletal animations using optimization and simulated physics. G2 pro gradu, diplomity, Aalto University, 03 November 2014Google Scholar
  30. 30.
    Tevatia, G., Schaal, S.: Inverse kinematics for humanoid robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 294–299 (2000)Google Scholar
  31. 31.
    Uno, Y., Kawato, M., Suzuki, R.: Formation of optimum trajectory in control of arm movement: minimum torque-change model. Japan IEICE Technical Report MBE86-79, pp. 9–16 (1987)Google Scholar
  32. 32.
    Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement. Biol. Cybern. 61(2), 89–101 (1989)CrossRefGoogle Scholar
  33. 33.
    Wampler, K., Andersen, E., Herbst, E., Lee, Y., Popović, Z.: Character animation in two-player adversarial games. ACM Trans. Graph. 29(3), 1–13 (2010)CrossRefGoogle Scholar
  34. 34.
    Whitney, D.E.: Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man-Mach. Syst. 10(2), 47–53 (1969)CrossRefGoogle Scholar
  35. 35.
    Yang, Y., Peng, G., Wang, Y., Zhang, H.: A new solution for inverse kinematics of 7-DOF manipulator based on genetic algorithm. In: Proceedings of the IEEE International Conference on Automation and Logistics, pp. 1947–1951, August 2007Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of PretoriaPretoriaSouth Africa

Personalised recommendations