A High-Dimensional Particle Swarm Optimization Based on Similarity Measurement

  • Jiqiang Feng
  • Guixiang Lai
  • Shi ChengEmail author
  • Feng Zhang
  • Yifei Sun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10385)


Particle Swarm Optimization (PSO) is a kind of classical population-based intelligent optimization methods that widely used in solving various optimization problems. With the increase of the dimensions of the optimized problem, the high-dimensional particle swarm optimization becomes an urgent, practical and popular issue. Based on data similarly measurement, a high-dimensional PSO algorithm is proposed to solve the high-dimensional problems. The study primarily defines a new distance paradigm based on the existing similarity measurement of high-dimensional data. This is followed by proposes a PSO variant under the new distance paradigm, namely the LPSO algorithm, which is extended from the classical Euclidean space to the metric space. Finally, it is showed that LPSO could obtain better solution at higher convergence speed in high-dimensional search space.


High-dimensional particle swarm optimization Data similarity measure function Lclose distance 



This work was supported in part by the National Natural Science Foundation of China under Grant 61401283, in part by the Educational Commission of Guangdong Province, China under Grant 2014KTSCX113, and in part by the Fundamental Research Funds for the Central Universities under Grant GK201703062 and GK201603014.


  1. 1.
    Aggarwal, C.C.: On the effects of dimensionality reduction on high dimensional similarity search. In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 256–266 (2001)Google Scholar
  2. 2.
    Cheng, S., Shi, Y., Qin, Q.: Particle swarm optimization based semi-supervised learning on Chinese text categorization. In: Proceedings of 2012 IEEE Congress on Evolutionary Computation (CEC 2012), Brisbane, Australia, pp. 3131–3198. IEEE (2012)Google Scholar
  3. 3.
    Cheng, S., Zhang, Q., Qin, Q.: Big data analytics with swarm intelligence. Ind. Manag. Data Syst. 116(4), 646–666 (2016)CrossRefGoogle Scholar
  4. 4.
    Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer and its adaptive variant. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 35(6), 1272–1282 (2005)CrossRefGoogle Scholar
  5. 5.
    Kakas, A., Moratis, P.: Argumentation based decision making for autonomous agents. In: Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2003), Melbourne, Australia, pp. 883–890 (2003)Google Scholar
  6. 6.
    Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  7. 7.
    Ma, Z.: Research on particle swarm optimization for high-dimensional and multi-objective optimization problems. Master’s thesis, Dalian University of Technology (2014)Google Scholar
  8. 8.
    Modgil, S.: Nested argumentation and its application to decision making over actions. In: Parsons, S., Maudet, N., Moraitis, P., Rahwan, I. (eds.) ArgMAS 2005. LNCS, vol. 4049, pp. 57–73. Springer, Heidelberg (2006). doi: 10.1007/11794578_4 CrossRefGoogle Scholar
  9. 9.
    Qin, Q., Cheng, S., Zhang, Q., Li, L., Shi, Y.: Particle swarm optimization with interswarm interactive learning strategy. IEEE Trans. Cybern. 46(10), 2238–2251 (2016)CrossRefGoogle Scholar
  10. 10.
    Shao, C.S., Lou, W., Yan, L.M.: Optimization of algorithm of similarity measurement in high-dimensional data. Comput. Technol. Dev. 21(2), 1–4 (2011)Google Scholar
  11. 11.
    Xie, M., Guo, J., Zhang, H., Chen, K.: Research on the similarity measurement of high dimensional data. Comput. Eng. Sci. 32(5), 92–96 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jiqiang Feng
    • 1
  • Guixiang Lai
    • 1
  • Shi Cheng
    • 2
    Email author
  • Feng Zhang
    • 3
  • Yifei Sun
    • 4
  1. 1.Institute of Intelligent Computing ScienceShenzhen UniversityShenzhenChina
  2. 2.School of Computer ScienceShaanxi Normal UniversityXi’anChina
  3. 3.School of Electrical EngineeringXi’an Jiaotong UniversityXi’anChina
  4. 4.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anChina

Personalised recommendations