Improving Multi-layer Particle Swarm Optimization Using Powell Method

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10385)


In recent years, multi-layer particle swarm optimization (MLPSO) has been applied in various global optimization problems for its superior performance. However, fast convergence speed leads the algorithm easy to converge to the local minimum. Therefore, MLPSO-Powell algorithm is proposed in this paper, selecting several swarm particles by the tournament operator in each generation to run Powell algorithm. MLPSO global searching performance with Powell local searching performance forces swarm particles to search more optima as much as possible, then it will rapidly converge as soon as it gets close to the global optimum. MLPSO-Powell enhances local search ability of PSO in dealing with multi-modal problems. The experimental results shows that the proposed approach improves performance and final results.


Multi-layer particle swarm optimization Powell Particle Swarm Optimization Tournament 



This work was supported by National Natural Science Foundation of China under Grant No. 61573166, No. 61572230, No. 61373054, No. 61472164, No. 61472163, No. 61672262, No. 61640218. Shandong Provincial Natural Science Foundation, China, under Grant ZR2015JL025. Science and technology project of Shandong Province under Grant No. 2015GGX101025. Project of Shandong Province Higher Educational Science and Technology Program under Grant No. J16LN07. Shandong Provincial Key R&D Program under Grant No. 2016ZDJS01A12.


  1. 1.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS 1995, pp. 39–43. IEEE, October 1995Google Scholar
  2. 2.
    Wang, L., Yang, B., Chen, Y.: Improving particle swarm optimization using multi-layer searching strategy. Inf. Sci. 274, 70–94 (2014)CrossRefGoogle Scholar
  3. 3.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, pp. 69–73. IEEE, May 1998Google Scholar
  4. 4.
    Suganthan, P.N.: Particle swarm optimiser with neighbourhood operator. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 3, pp. 1958–1962. IEEE (1999)Google Scholar
  5. 5.
    Liang, J.J., Suganthan, P.N.: Dynamic multi-swarm particle swarm optimizer with local search. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 522–528. IEEE, September 2005Google Scholar
  6. 6.
    Veeramachaneni, K., Peram, T., Mohan, C., Osadciw, L.A.: Optimization using particle swarms with near neighbor interactions. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 110–121. Springer, Heidelberg (2003). doi: 10.1007/3-540-45105-6_10 CrossRefGoogle Scholar
  7. 7.
    Wang, L., Yang, B., Orchard, J.: Particle swarm optimization using dynamic tournament topology. Appl. Soft Comput. 48, 584–596 (2016)CrossRefGoogle Scholar
  8. 8.
    Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)CrossRefGoogle Scholar
  9. 9.
    Susilo, A.: Comprehensive learning particle swarm optimizer (CLPSO) for global optimization of multimodal functions. Undergraduate theses (2008)Google Scholar
  10. 10.
    Wang, L., Yang, B., Abraham, A.: Distilling middle-age cement hydration kinetics from observed data using phased hybrid evolution. Soft. Comput. 20(9), 3637–3656 (2016)CrossRefGoogle Scholar
  11. 11.
    Zhang, C., Li, T., Agarwal, R.P., Bohner, M.: Oscillation results for fourth-order nonlinear dynamic equations. Appl. Math. Lett. 25(12), 2058–2065 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zhang, C., Agarwal, R.P., Li, T.: Oscillation and asymptotic behavior of higher-order delay differential equations with p-Laplacian like operators. J. Math. Anal. Appl. 409(2), 1093–1106 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zhang, C., Agarwal, R.P., Bohner, M., Li, T.: Oscillation of fourth-order delay dynamic equations. Sci. China Math. 58(1), 143–160 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wang, L., Yang, B., Chen, Y., Zhang, X., Orchard, J.: Improving neural-network classifiers using nearest neighbor partitioning. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi: 10.1109/TNNLS.2016.2580570
  15. 15.
    Powell, M.J.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7(2), 155–162 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Watson, G.A. (ed.) Numerical Analysis. LNM, vol. 630, pp. 144–157. Springer, Heidelberg (1978). doi: 10.1007/BFb0067703 CrossRefGoogle Scholar
  17. 17.
    Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)CrossRefGoogle Scholar
  18. 18.
    Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL report 2005005 (2005)Google Scholar
  19. 19.
    Holland, J.H.: Adaptation in natural and artificial systems. MIT Press (1992)Google Scholar
  20. 20.
    Yuhui, S., Eberhart, R.C.: Empirical study of particle swarm optimization (1999)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinanChina

Personalised recommendations