Skip to main content

Improving Multi-layer Particle Swarm Optimization Using Powell Method

  • 1660 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10385)

Abstract

In recent years, multi-layer particle swarm optimization (MLPSO) has been applied in various global optimization problems for its superior performance. However, fast convergence speed leads the algorithm easy to converge to the local minimum. Therefore, MLPSO-Powell algorithm is proposed in this paper, selecting several swarm particles by the tournament operator in each generation to run Powell algorithm. MLPSO global searching performance with Powell local searching performance forces swarm particles to search more optima as much as possible, then it will rapidly converge as soon as it gets close to the global optimum. MLPSO-Powell enhances local search ability of PSO in dealing with multi-modal problems. The experimental results shows that the proposed approach improves performance and final results.

Keywords

  • Multi-layer particle swarm optimization
  • Powell
  • Particle Swarm Optimization
  • Tournament

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-61824-1_18
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-61824-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS 1995, pp. 39–43. IEEE, October 1995

    Google Scholar 

  2. Wang, L., Yang, B., Chen, Y.: Improving particle swarm optimization using multi-layer searching strategy. Inf. Sci. 274, 70–94 (2014)

    CrossRef  Google Scholar 

  3. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, pp. 69–73. IEEE, May 1998

    Google Scholar 

  4. Suganthan, P.N.: Particle swarm optimiser with neighbourhood operator. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 3, pp. 1958–1962. IEEE (1999)

    Google Scholar 

  5. Liang, J.J., Suganthan, P.N.: Dynamic multi-swarm particle swarm optimizer with local search. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 522–528. IEEE, September 2005

    Google Scholar 

  6. Veeramachaneni, K., Peram, T., Mohan, C., Osadciw, L.A.: Optimization using particle swarms with near neighbor interactions. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 110–121. Springer, Heidelberg (2003). doi:10.1007/3-540-45105-6_10

    CrossRef  Google Scholar 

  7. Wang, L., Yang, B., Orchard, J.: Particle swarm optimization using dynamic tournament topology. Appl. Soft Comput. 48, 584–596 (2016)

    CrossRef  Google Scholar 

  8. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

    CrossRef  Google Scholar 

  9. Susilo, A.: Comprehensive learning particle swarm optimizer (CLPSO) for global optimization of multimodal functions. Undergraduate theses (2008)

    Google Scholar 

  10. Wang, L., Yang, B., Abraham, A.: Distilling middle-age cement hydration kinetics from observed data using phased hybrid evolution. Soft. Comput. 20(9), 3637–3656 (2016)

    CrossRef  Google Scholar 

  11. Zhang, C., Li, T., Agarwal, R.P., Bohner, M.: Oscillation results for fourth-order nonlinear dynamic equations. Appl. Math. Lett. 25(12), 2058–2065 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Zhang, C., Agarwal, R.P., Li, T.: Oscillation and asymptotic behavior of higher-order delay differential equations with p-Laplacian like operators. J. Math. Anal. Appl. 409(2), 1093–1106 (2014)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Zhang, C., Agarwal, R.P., Bohner, M., Li, T.: Oscillation of fourth-order delay dynamic equations. Sci. China Math. 58(1), 143–160 (2015)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Wang, L., Yang, B., Chen, Y., Zhang, X., Orchard, J.: Improving neural-network classifiers using nearest neighbor partitioning. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi:10.1109/TNNLS.2016.2580570

  15. Powell, M.J.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7(2), 155–162 (1964)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Watson, G.A. (ed.) Numerical Analysis. LNM, vol. 630, pp. 144–157. Springer, Heidelberg (1978). doi:10.1007/BFb0067703

    CrossRef  Google Scholar 

  17. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)

    CrossRef  Google Scholar 

  18. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL report 2005005 (2005)

    Google Scholar 

  19. Holland, J.H.: Adaptation in natural and artificial systems. MIT Press (1992)

    Google Scholar 

  20. Yuhui, S., Eberhart, R.C.: Empirical study of particle swarm optimization (1999)

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China under Grant No. 61573166, No. 61572230, No. 61373054, No. 61472164, No. 61472163, No. 61672262, No. 61640218. Shandong Provincial Natural Science Foundation, China, under Grant ZR2015JL025. Science and technology project of Shandong Province under Grant No. 2015GGX101025. Project of Shandong Province Higher Educational Science and Technology Program under Grant No. J16LN07. Shandong Provincial Key R&D Program under Grant No. 2016ZDJS01A12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sun, F. et al. (2017). Improving Multi-layer Particle Swarm Optimization Using Powell Method. In: Tan, Y., Takagi, H., Shi, Y. (eds) Advances in Swarm Intelligence. ICSI 2017. Lecture Notes in Computer Science(), vol 10385. Springer, Cham. https://doi.org/10.1007/978-3-319-61824-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61824-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61823-4

  • Online ISBN: 978-3-319-61824-1

  • eBook Packages: Computer ScienceComputer Science (R0)