Advertisement

Hybrid Comprehensive Learning Particle Swarm Optimizer with Adaptive Starting Local Search

  • Yulian Cao
  • Wenfeng LiEmail author
  • W. Art Chaovalitwongse
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10385)

Abstract

Particle Swarm Optimization (PSO) offers efficient simultaneous global and local searches but is challenged with the problem of slow local convergence. To address this issue, a hybrid comprehensive learning PSO algorithm with adaptive starting local search (ALS-HCLPSO) is proposed. Determining when to start local search is the main of ALS-HCLPSO. A quasi-entropy index is innovatively utilized as the criterion of population diversity to depict an aggregation degree of particles and to ascertain whether the global optimum basin has been explored. This adaptive strategy ensures the proper starting of local search. The test results on eight multimodal benchmark functions demonstrate the performance superiority of ALS-HCLPSO. And comparison results on six advanced PSO variants further test the validity and superiority of ALS-HCLPSO algorithm.

Keywords

Quasi-entropy Adaptive strategy Population diversity Local search 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grants No. 61571336, No. 61603280 and No. 71672137).

References

  1. 1.
    Kenndy, J., Eberhart, R.C.: Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw. 4, 1942–1948 (1995)CrossRefGoogle Scholar
  2. 2.
    Liang, X., Li, W., Zhang, Y., et al.: An adaptive particle swarm optimization method based on clustering. Soft. Comput. 19(2), 431–448 (2015)CrossRefGoogle Scholar
  3. 3.
    Liang, J.J., Qin, A.K., Suganthan, P.N., et al.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)CrossRefGoogle Scholar
  4. 4.
    Nasir, M., Das, S., Maity, D., et al.: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inform. Sci. 209, 16–36 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lynn, N., Suganthan, P.N.: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evol. Comput. 24, 11–24 (2015)CrossRefGoogle Scholar
  6. 6.
    Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming, 4th edn. Springer, New York (2015)zbMATHGoogle Scholar
  7. 7.
    Pablo, M.: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Technique report, Caltech Concurrent Computation Program, USA (1989)Google Scholar
  8. 8.
    Zhao, S.Z., Liang, J.J., Suganthan, P.N., et al.: Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization. In: 2008 IEEE Congress on Evolutionary Computation, pp. 3845–3852 (2008)Google Scholar
  9. 9.
    Han, F., Liu, Q.: An improved hybrid PSO based on ARPSO and the Quasi-Newton Method. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) ICSI 2015. LNCS, vol. 9140, pp. 460–467. Springer, Cham (2015). doi: 10.1007/978-3-319-20466-6_48 CrossRefGoogle Scholar
  10. 10.
    Parsopoulos, K.E., Vrahatis, M.N.: Unified particle swarm optimization in dynamic environments. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, George D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 590–599. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-32003-6_62 CrossRefGoogle Scholar
  11. 11.
    Peram, T., Veeramachaneni, K., Mohan, C.K.: Fitness-distance-ratio based particle swarm optimization. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 174–181 (2003)Google Scholar
  12. 12.
    Tanweer, M.R., Suresh, S., Sundararajan, N.: Self regulating particle swarm optimization algorithm. Inform. Sci. 294, 182–202 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yulian Cao
    • 1
  • Wenfeng Li
    • 1
    Email author
  • W. Art Chaovalitwongse
    • 2
  1. 1.School of Logistics EngineeringWuhan University of TechnologyWuhanChina
  2. 2.Department of Industrial Engineering, Institute for Advanced Data AnalyticsUniversity of ArkansasFayettevilleUSA

Personalised recommendations