Skip to main content

Bacterial Bioreporter Applications in Ecotoxicology: Concepts and Practical Approach

  • Chapter
  • First Online:

Abstract

Bioreporters are widespread in the ecotoxicological field, and they are used in concert with a range of physico-chemical methods for environmental characterization. These biological methods allow the assessment of other parameters that are not otherwise accessible. Among the broad diversity of available bioreporters, bacterial approaches are particularly interesting for their simple implementation, low cost and timeliness of their response (because of their metabolic kinetics and their growth rate). In this chapter, we are interested in the primary proposed strategies from one initial assumption: the use of one bioreporter to test one parameter. This strategy rapidly reached its limits (for lack of specificity or representativity), thus opening the way for other biological approaches that were more reliable but also more complex (implemented technology and data treatment).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bartell SM (2006) Biomarkers, bioindicators, and ecological risk assessment—a brief review and evaluation. Environ Bioindic 1(1):60–73

    Article  CAS  Google Scholar 

  • Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6(3):206–212

    Article  CAS  PubMed  Google Scholar 

  • Belkin S (2006) Genetically engineered microorganisms for pollution monitoring. In: Twardowska I, Allen HE, Häggblom MM, Stefaniak S (eds) Soil and water pollution monitoring, protection and remediation, vol 69. NATO Science Series: IV: Earth and Environmental Sciences. Springer, Netherlands, pp 147–160

    Google Scholar 

  • Berno E, Pereira Marcondes DF, Ricci Gamalero S, Eandi M (2004) Recombinant Escherichia coli for the biomonitoring of benzene and its derivatives in the air. Ecotoxicol Environ Saf 57(2):118–122

    Article  CAS  PubMed  Google Scholar 

  • Bittel M, Cordella CBY, Assaf A, Jouanneau S, Durand MJ, Thouand G (2015) Potential of raman spectroscopy to monitor arsenic toxicity on bacteria: insights toward multiparametric bioassays. Environ Sci Technol 49(20):12324–12332

    Article  CAS  PubMed  Google Scholar 

  • Burger J, Gochfeld M (2001) On developing bioindicators for human and ecological health. Environ Monit Assess 66(1):23–46

    Article  CAS  PubMed  Google Scholar 

  • Catterall K, Zhao H, Pasco N, John R (2003) Development of a rapid ferricyanide-mediated assay for biochemical oxygen demand using a mixed microbial consortium. Anal Chem 75(11):2584–2590

    Article  CAS  PubMed  Google Scholar 

  • Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19(6):607–613

    Article  CAS  PubMed  Google Scholar 

  • Charrier T, Durand MJ, Jouanneau S, Dion M, Pernetti M, Poncelet D, Thouand G (2011) A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part I: design and optimization of bioluminescent bacterial strains. Anal Bioanal Chem 400(4):1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Checa SK, Zurbriggen MD, Soncini FC (2012) Bacterial signaling systems as platforms for rational design of new generations of biosensors. Curr Opin Biotechnol 23(5):766–772

    Article  CAS  PubMed  Google Scholar 

  • Chee G-J, Nomura Y, Ikebukuro K, Karube I (2005) Development of photocatalytic biosensor for the evaluation of biochemical oxygen demand. Biosens Bioelectron 21(1):67–73

    Article  CAS  PubMed  Google Scholar 

  • Choo-Smith L-P, Maquelin K, van Vreeswijk T, Bruining HA, Puppels GJ, Thi NAN, Kirschner C, Naumann D, Ami D, Villa AM et al (2001) Investigating microbial (micro)colony heterogeneity by vibrational spectroscopy. Appl Environ Microbiol 67(4):1461–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai C, Choi S (2013) Technology and applications of microbial biosensor. Open J. Appl. Biosens. 2(3):83–93

    Article  Google Scholar 

  • Diesel E, Schreiber M, van der Meer J (2009) Development of bacteria-based bioassays for arsenic detection in natural waters. Anal Bioanal Chem 394(3):687–693

    Article  CAS  PubMed  Google Scholar 

  • Dudal Y, Holgado R, Knoth K, Debroux M (2006) A fluorescence-based microplate assay to quantify DOM-induced catabolic activity. Anal Bioanal Chem 384(1):175–179

    Article  CAS  PubMed  Google Scholar 

  • Durand MJ, Thouand G, Dancheva-Ivanova T, Vachon P, DuBow M (2003) Specific detection of organotin compounds with a recombinant luminescent bacteria. Chemosphere 52(1):103–111

    Article  CAS  PubMed  Google Scholar 

  • Durand MJ, Hua A, Jouanneau S, Cregut M, Thouand G (2015) Detection of metal and organometallic compounds with bioluminescent bacterial bioassays. In: Thouand G, Marks R (eds) Bioluminescence: fundamentals and applications in biotechnology, vol 3. Advances in biochemical engineering/biotechnology. Springer International Publishing, Berlin, pp 77–99

    Google Scholar 

  • D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16(6):337–353

    Article  PubMed  Google Scholar 

  • Elad T, Benovich E, Magrisso S, Belkin S (2008) Toxicant identification by a luminescent bacterial bioreporter panel: application of pattern classification algorithms. Env Sci Technol 42(22):8486–8491

    Article  CAS  Google Scholar 

  • Eltzov E, Marks R (2011) Whole-cell aquatic biosensors. Anal Bioanal Chem 400(4):895–913

    Article  CAS  PubMed  Google Scholar 

  • Fai PB, Grant A (2010) An assessment of the potential of the microbial assay for risk assessment (MARA) for ecotoxicological testing. Ecotoxicology 19(8):1626–1633

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Hu Z, Riley LK, Purdy GA, Mustapha A, Lin M (2010) Detecting food- and waterborne viruses by surface-enhanced Raman spectroscopy. J Food Sci 75(5):M302–307

    CAS  PubMed  Google Scholar 

  • Fernández-Piñas F, Rodea-Palomares I, Leganés F, González-Pleiter M, Muñoz-Martín MA (2014) Evaluation of the ecotoxicity of pollutants with bioluminescent microorganisms. In: Thouand G, Marks R (eds) Bioluminescence: fundamentals and applications in biotechnology, vol 2. Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 65–135

    Google Scholar 

  • Gellert G (2000) Sensitivity and significance of luminescent bacteria in chronic toxicity testing based on growth and bioluminescence. Ecotoxicol Environ Saf 45(1):87–91

    Article  CAS  PubMed  Google Scholar 

  • Gellert G, Stommel A, Trujillano AB (1999) Development of an optimal bacterial medium based on the growth inhibition assay with Vibrio fischeri. Chemosphere 39(3):467–476

    Article  CAS  PubMed  Google Scholar 

  • Great Britain (1908) Royal commission on sewage disposal. Final report of the commissioners appointed to inquire and report what methods of treating and disposing of sewage (including any liquid from any factory or manufacturing process) may properly be adopted. General summary of conclusions and recommendations, Cornell University Library

    Google Scholar 

  • Gu BM, Gil CG (2001) A multi-channel continuous toxicity monitoring system using recombinant bioluminescent bacteria for classification of toxicity. Biosens Bioelectron 16(9–12):661–666

    CAS  PubMed  Google Scholar 

  • Gueune H, Durand MJ, Thouand G, DuBow MS (2008) The ygaVP genes of Escherichia coli form a tributyltin-inducible operon. Appl Env Microbiol 74(6):1954–1958

    Article  CAS  Google Scholar 

  • Gueune H, Thouand G, Durand MJ (2009) A new bioassay for the inspection and identification of TBT-containing antifouling paint. Mar Pollut Bull 58(11):1734–1738

    Article  CAS  PubMed  Google Scholar 

  • Guzzo A, Diorio C, DuBow MS (1991) Transcription of the Escherichia coli fliC gene is regulated by metal ions. Appl Env. Microbiol 57(8):2255–2259

    CAS  Google Scholar 

  • Hakkila K, Green T, Leskinen P, Ivask A, Marks R, Virta M (2004) Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J Appl Toxicol 24(5):333–342

    Article  CAS  PubMed  Google Scholar 

  • Hua A, Gueuné H, Cregut M, Thouand G, Durand M-J (2015) Development of a bacterial bioassay for atrazine and cyanuric acid detection. Front Microbiol 6

    Google Scholar 

  • Huang WE, Li M, Jarvis RM, Goodacre R, Banwart SA (2010) Shining light on the microbial world: the application of Raman microspectroscopy. In: Advances in applied microbiology, vol 70. Academic Press, New York, pp 153–186

    Google Scholar 

  • Hynninen A, Tönismann K, Virta M (2010) Improving the sensitivity of bacterial bioreporters for heavy metals. Bioeng Bugs 1(2):132–138

    Article  PubMed  Google Scholar 

  • ISO 5815-1:2003 (2003a) Water quality—determination of biochemical oxygen demand after n days (BODn)—Part 1: dilution and seeding method with allylthiourea addition

    Google Scholar 

  • ISO 5815-2:2003 (2003b) Water quality—determination of biochemical oxygen demand after n days (BODn)—part 2: method for undiluted samples http://www.iso.org/iso/catalogue_detail.htm?csnumber=31091. Accessed 7 July 2016

  • Ivask A, Green T, Polyak B, Mor A, Kahru A, Virta M, Marks R (2007) Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. Biosens Bioelectron 22(7):1396–1402

    Article  CAS  PubMed  Google Scholar 

  • Ivask A, Rolova T, Kahru A (2009) A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnol 9:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarvis RM, Goodacre R (2005) Genetic algorithm optimization for pre-processing and variable selection of spectroscopic data. Bioinformatics 21(7):860–868

    Article  CAS  PubMed  Google Scholar 

  • Jennings VLK, Rayner-Brandes MH, Bird DJ (2001) Assessing chemical toxicity with the bioluminescent photobacterium (vibrio fischeri): a comparison of three commercial systems. Water Res 35(14):3448–3456

    Article  CAS  PubMed  Google Scholar 

  • Jouanneau S, Durand M-J, Courcoux P, Blusseau T, Thouand G (2011) Improvement of the identification of four heavy metals in environmental samples by using predictive decision tree models coupled with a set of five bioluminescent bacteria. Environ Sci Technol 45(7):2925–2931

    Article  CAS  PubMed  Google Scholar 

  • Jouanneau S, Recoules L, Durand MJ, Boukabache A, Picot V, Primault Y, Lakel A, Sengelin M, Barillon B, Thouand G (2014) Methods for assessing biochemical oxygen demand (BOD): a review. Water Res 49:62–82

    Article  CAS  PubMed  Google Scholar 

  • Jung Y, Park C-B, Kim Y, Kim S, Pflugmacher S, Baik S (2015) Application of multi-species microbial bioassay to assess the effects of engineered nanoparticles in the aquatic environment: potential of a luminous microbial array for toxicity risk assessment (LumiMARA) on testing for surface-coated silver nanoparticles. Int J Environ Res Public Health 12(7):8172–8186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur H, Kumar R, Babu JN, Mittal S (2015) Advances in arsenic biosensor development—a comprehensive review. Biosens Bioelectron 63:533–545

    Article  CAS  PubMed  Google Scholar 

  • King JMH, DiGrazia PM, Applegate B, Burlage R, Sanseverino J, Dunbar P, Larimer F, Sayler GS (1990) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249(4970):778–781

    Article  CAS  PubMed  Google Scholar 

  • Lasch P (2012) Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemom Intell Lab Syst 117:100–114

    Article  CAS  Google Scholar 

  • Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta Mol Electron Anal Chem 568(1–2):200–210

    Article  CAS  Google Scholar 

  • Ma Z, Jacobsen FE, Giedroc DP (2009) Coordination chemistry of bacterial metal transport and sensing. Chem Rev 109(10):4644–4681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall CP, Marshall AO (1922) The potential of Raman spectroscopy for the analysis of diagenetically transformed carotenoids. Philos Trans R Soc Lond Math Phys Eng Sci 2010(368):3137–3144

    Google Scholar 

  • Marshall CP, Edwards HG, Jehlicka J (2010) Understanding the application of Raman spectroscopy to the detection of traces of life. https://kuscholarworks.ku.edu/bitstream/handle/1808/17372/MarshallC_Astrobio_10%282%29229.pdf

  • Menz J, Schneider M, Kümmerer K (2013) Toxicity testing with luminescent bacteria—characterization of an automated method for the combined assessment of acute and chronic effects. Chemosphere 93(6):990–996

    Article  CAS  PubMed  Google Scholar 

  • Merulla D, Buffi N, Beggah S, Truffer F, Geiser M, Renaud P, van der Meer JR (2013) Bioreporters and biosensors for arsenic detection. Biotechnological solutions for a world-wide pollution problem. Curr Opin Biotechnol 24(3):534–541

    Article  CAS  PubMed  Google Scholar 

  • Merulla D, van der Meer JR (2016) Regulatable and modulable background expression control in prokaryotic synthetic circuits by auxiliary repressor binding sites. ACS Synth Biol 5(1):36–45

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa T, Inouye S, Nakazawa A (1980) Physical and functional mapping of RP4-TOL plasmid recombinants: analysis of insertion and deletion mutants. J Bacteriol 144(1):222–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neugebauer U, Schmid U, Baumann K, Holzgrabe U, Ziebuhr W, Kozitskaya S, Kiefer W, Schmitt M, Popp J (2006) Characterization of bacterial growth and the influence of antibiotics by means of UV resonance Raman spectroscopy. Biopolymers 82(4):306–311

    Article  CAS  PubMed  Google Scholar 

  • Park M, Tsai S-L, Chen W (2013) Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors 13(5):5777–5795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasco N, Baronian K, Jeffries C, Webber J, Hay J (2004) MICREDOX®—development of a ferricyanide-mediated rapid biochemical oxygen demand method using an immobilised Proteus vulgaris biocomponent. Biosens Bioelectron 20(3):524–532

    Article  CAS  PubMed  Google Scholar 

  • Peinado MT, Mariscal A, Carnero-Varo M, Fernández-Crehuet J (2002) Correlation of two bioluminescence and one fluorogenic bioassay for the detection of toxic chemicals. Ecotoxicol Environ Saf 53(1):170–177

    Article  CAS  PubMed  Google Scholar 

  • Pence I, Mahadevan-Jansen A (2016) Clinical instrumentation and applications of Raman spectroscopy. Chem Soc Rev 45(7):1958–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponomareva O, Arlyapov V, Alferov V, Reshetilov A (2011) Microbial biosensors for detection of biological oxygen demand (a review). Appl Biochem Microbiol 47(1):1–11

    Article  CAS  Google Scholar 

  • Radix P, Léonard M, Papantoniou C, Roman G, Saouter E, Gallotti-Schmitt S, Thiébaud H, Vasseur P (2000) Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals. Ecotoxicol Environ Saf 47(2):186–194

    Article  CAS  PubMed  Google Scholar 

  • Rae A, Stosch R, Klapetek P, Hight Walker AR, Roy D (2014a) State of the art Raman techniques for biological applications. Methods 68(2):338–347

    Article  CAS  PubMed  Google Scholar 

  • Rae A, Stosch R, Klapetek P, Hight Walker AR, Roy D (2014b) State of the art Raman techniques for biological applications. Methods 68(2):338–347

    Article  CAS  PubMed  Google Scholar 

  • Raud M, Kikas T (2013) Bioelectronic tongue and multivariate analysis: a next step in BOD measurements. Water Res 47(7):2555–2562

    Article  CAS  PubMed  Google Scholar 

  • Raud M, Tenno T, Jõgi E, Kikas T (2012) Comparative study of semi-specific Aeromonas hydrophila and universal Pseudomonas fluorescens biosensors for BOD measurements in meat industry wastewaters. Enzyme Microb Technol 50(4–5):221–226

    Article  CAS  PubMed  Google Scholar 

  • Roda A, Cevenini L, Michelini E, Branchini BR (2011a) A portable bioluminescence engineered cell-based biosensor for on-site applications. Biosens Bioelectron 26(8):3647–3653

    Article  CAS  PubMed  Google Scholar 

  • Roda A, Roda B, Cevenini L, Michelini E, Mezzanotte L, Reschiglian P, Hakkila K, Virta M (2011b) Analytical strategies for improving the robustness and reproducibility of bioluminescent microbial bioreporters. Anal Bioanal Chem 401(1):201–211

    Article  CAS  PubMed  Google Scholar 

  • Rutledge DN, Jouan-Rimbaud Bouveresse D (2013) Independent components analysis with the JADE algorithm. TrAC Trends Anal Chem 50:22–32

    Article  CAS  Google Scholar 

  • Schuster KC, Urlaub E, Gapes JR (2000) Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture. J Microbiol Methods 42(1):29–38

    Article  CAS  PubMed  Google Scholar 

  • Siegfried K, Endes C, Bhuiyan AFMK, Kuppardt A, Mattusch J, van der Meer JR, Chatzinotas A, Harms H (2012) Field testing of arsenic in groundwater samples of Bangladesh using a test kit based on lyophilized bioreporter bacteria. Environ Sci Technol 46(6):3281–3287

    Article  CAS  PubMed  Google Scholar 

  • Singer AC, Huang WE, Helm J, Thompson IP (2005) Insight into pollutant bioavailability and toxicity using Raman confocal microscopy. J Microbiol Methods 60(3):417–422

    Article  CAS  PubMed  Google Scholar 

  • Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26(5):1788–1799

    Article  CAS  PubMed  Google Scholar 

  • Sun J-Z, Peter Kingori G, Si R-W, Zhai D-D, Liao Z-H, Sun D-Z, Zheng T, Yong Y-C (2015) Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci Technol J Int Assoc Water Pollut Res 71(6):801–809

    Article  CAS  Google Scholar 

  • Tian H, Zhuang G, Ma A, Jing C (2012) Arsenic interception by cell wall of bacteria observed with surface-enhanced Raman scattering. J Microbiol Methods 89(3):153–158

    Article  CAS  PubMed  Google Scholar 

  • Turner K, Raut N, Pasini P, Daunert S, Michelini E, Cevenini L, Mezzanotte L, Roda A (2010) Cell-based bioluminescent biosensors. In: Roda A (ed) Chemiluminescence and bioluminescence. Royal Society of Chemistry, Cambridge, pp 511–542

    Google Scholar 

  • Vankeirsbilck T, Vercauteren A, Baeyens W, Van der Weken G, Verpoort F, Vergote G, Remon JP (2002) Applications of Raman spectroscopy in pharmaceutical analysis. TrAC Trends Anal Chem 21(12):869–877

    Article  CAS  Google Scholar 

  • Wadhia K (2008) ISTA13—international interlaboratory comparative evaluation of microbial assay for risk assessment (MARA). Environ Toxicol 23(5):626–633

    Article  CAS  PubMed  Google Scholar 

  • Wadhia K, Dando T, Thompson KC (2007) Intra-laboratory evaluation of microbial assay for risk assessment (MARA) for potential application in the implementation of the water framework directive (WFD). J Environ Monit 9(9):953–958

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Close DM, Sayler GS, Ripp S (2013) Genetically modified whole-cell bioreporters for environmental assessment. Ecol Indic 28:125–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagur-Kroll S, Belkin S (2014) Molecular manipulations for enhancing luminescent bioreporters performance in the detection of toxic chemicals. In: Thouand G, Marks R (eds) Bioluminescence: fundamentals and applications in biotechnology, vol 3. Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 137–149

    Google Scholar 

  • Yoshida N, Hoashi J, Morita T, McNiven SJ, Nakamura H, Karube I (2001) Improvement of a mediator-type biochemical oxygen demand sensor for on-site measurement. J Biotechnol 88(3):269–275

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sulivan Jouanneau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jouanneau, S., Durand, MJ., Assaf, A., Bittel, M., Thouand, G. (2017). Bacterial Bioreporter Applications in Ecotoxicology: Concepts and Practical Approach. In: Cravo-Laureau, C., Cagnon, C., Lauga, B., Duran, R. (eds) Microbial Ecotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-61795-4_12

Download citation

Publish with us

Policies and ethics