Endotoxins, Glucans and Other Microbial Cell Wall Agents

  • Ioannis BasinasEmail author
  • Grethe Elholm
  • Inge M. Wouters


During the last decades an increasing interest in microbial cell wall agents has been established, since exposure to these agents has been linked to a wide range of adverse and beneficial health effects. The term microbial cell wall agents refers to a group of molecules of different composition that are integral structural components of microorganisms like gram-negative and gram positive bacteria and fungi. The available information on exposure characteristics for these cell wall agents within indoor environments and their associated health effects is summarized in this chapter.

Large variation in exposure levels of microbial cell wall agents in indoor occupational environments is documented, whereas actual airborne levels of exposures and determinants of residential indoor air are lacking. Standardisation of methods for determination is highly recommended for future studies.

Endotoxins, cell wall agents of gram-negative bacteria, are well studied and involved in the development of adverse and protective health effects, but for cell wall agents of fungi, like glucans the evidence is more limited and inconclusive. For other microbial cell wall agents, like muramic acid, EPS and ergosterol, studies have been sparse and very diverse in their design and applied methods.

Future recommendations include studies in large populations with a longitudinal design involving both exposure assessment and health effects assessment of distinct microbial cell wall agents and co-existent microbes, which is needed to understand the role of individual and combined exposures in health.


Cell wall agents endotoxins glucans 


  1. Abraham JH, Gold DR, Dockery DW et al (2005) Within-home versus between-home variability of house dust endotoxin in a birth cohort. Environ Health Perspect 113:1516–21PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adachi Y, Okazaki M, Ohno N, Yadomae T (1994) Enhancement of cytokine production by macrophages stimulated with (1-->3)-beta-D-glucan, grifolan (GRN), isolated from Grifola frondosa. Biol Pharm Bull 17:1554–60PubMedCrossRefGoogle Scholar
  3. Adhikari A, Kettleson EM, Vesper S et al (2014) Dustborne and airborne Gram-positive and Gram-negative bacteria in high versus low ERMI homes. Sci Total Environ 482–483:92–9. doi: 10.1016/j.scitotenv.2014.02.110 PubMedCrossRefGoogle Scholar
  4. Adhikari A, Lewis JS, Reponen T et al (2010) Exposure matrices of endotoxin, (1→3)-β-d-glucan, fungi, and dust mite allergens in flood-affected homes of New Orleans. Sci Total Environ 408:5489–98. doi: 10.1016/j.scitotenv.2010.07.087 PubMedCrossRefGoogle Scholar
  5. Alwis KU, Milton DK (2006) Recombinant factor C assay for measuring endotoxin in house dust: comparison with LAL, and (1 --> 3)-beta-D-glucans. Am J Ind Med 49:296–300. doi: 10.1002/ajim.20264 PubMedCrossRefGoogle Scholar
  6. Arbejdstilsynet (2007) At-vejledning. Grænseværdier for stoffer og materialer. [Danish Working Environment Authority. Limit values for substances and materials]. Publication no. C.0.1. The Danish Working Environment Authority, Copenhagen, Denmark. Accessed 05 Jan 2016
  7. Arbeidstilsynet (2011) Veiledning om administrative normer for forurensning i arbeidsatmosfære. [The Norwegian Labour Inspection Authority. Guidance for administrative standards for contamination of the work environment]. Manual no. 361. Trondheim, Norway. Available via Accessed 05 Jan 2016
  8. Arteaga V, Mitchell D, Armitage T et al (2015) Cage versus noncage laying-hen housings: respiratory exposures. J Agromed. 20:245–255. doi: 10.1080/1059924X.2015.1044681 CrossRefGoogle Scholar
  9. Astrakianakis G, Seixas NS, Ray R et al (2007) Lung cancer risk among female textile workers exposed to endotoxin. J Natl Cancer Inst 99:357–364. doi: 10.1093/jnci/djk063 PubMedCrossRefGoogle Scholar
  10. Bakirci N, Kalaca S, Francis H et al (2007) Natural history and risk factors of early respiratory responses to exposure to cotton dust in newly exposed workers. J Occup Environ Med 49:853–61. doi: 10.1097/JOM.0b013e3180dca598 PubMedCrossRefGoogle Scholar
  11. Bakolis I, Doekes G, Heinrich J et al (2012) Respiratory health and endotoxin: associations and modification by CD14/-260 genotype. Eur Respir J 39:573–81. doi: 10.1183/09031936.00164410 PubMedCrossRefGoogle Scholar
  12. Basinas I, Schlunssen V, Heederik D et al (2012a) Sensitisation to common allergens and respiratory symptoms in endotoxin exposed workers: a pooled analysis. Occup Environ Med 69:99–106. doi: 10.1136/oem.2011.065169 PubMedCrossRefGoogle Scholar
  13. Basinas I, Sigsgaard T, Heederik D et al (2012b) Exposure to inhalable dust and endotoxin among Danish livestock farmers: results from the SUS cohort study. J Env Monit 14:604–614. doi: 10.1039/c1em10576k CrossRefGoogle Scholar
  14. Basinas I, Sigsgaard T, Kromhout H et al (2015) A comprehensive review of levels and determinants of personal exposure to dust and endotoxin in livestock farming. J Expo Sci Env Epidemiol 25:123–137. doi: 10.1038/jes.2013.83 CrossRefGoogle Scholar
  15. Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430:257–263PubMedCrossRefGoogle Scholar
  16. Bønløkke JH, Stridh G, Sigsgaard T et al (2006) Upper-airway inflammation in relation to dust spiked with aldehydes or glucan. Scand J Work Environ Health 32:374–82PubMedCrossRefGoogle Scholar
  17. Bos JD, Meinardi MM (2000) The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 9:165–9PubMedCrossRefGoogle Scholar
  18. Bos MP, Robert V, Tommassen J (2007) Biogenesis of the Gram-Negative bacterial outer membrane. Ann Rev Microbiol 61:191–214. doi: 10.1146/annurev.micro.61.080706.093245 CrossRefGoogle Scholar
  19. Braga M, Quecchia C, Cavallucci E et al (2011) T regulatory cells in allergy. Int J Immunopathol Pharmacol 24:55S–64SPubMedGoogle Scholar
  20. Braga M, Schiavone C, Di Gioacchino G et al (2012) Environment and T regulatory cells in allergy. Sci Total Environ 423:193–201. doi: 10.1016/j.scitotenv.2010.08.015 PubMedCrossRefGoogle Scholar
  21. Brand S, Teich R, Dicke T et al (2011) Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol 128:617–618. doi: 10.1016/j.jaci.2011.04.035 CrossRefGoogle Scholar
  22. Braun-Fahrlander C, Riedler J, Herz U et al (2002) Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 347:869–877. doi: 10.1056/NEJMoa020057 PubMedCrossRefGoogle Scholar
  23. Brinchmann BC, Bayat M, Brøgger T et al (2011) A possible role of chitin in the pathogenesis of asthma and allergy. Ann Agric Environ Med 18:7–12PubMedGoogle Scholar
  24. Brooks CR, Siebers R, Crane J et al (2013) Measurement of β-(1,3)-glucan in household dust samples using Limulus amebocyte assay and enzyme immunoassays: an inter-laboratory comparison. Environ Sci Process Impacts 15:405–11. doi: 10.1039/c2em30749a PubMedCrossRefGoogle Scholar
  25. Burch JB, Svendsen E, Siegel PD et al (2010) Endotoxin exposure and inflammation markers among agricultural workers in Colorado and Nebraska. J Toxicol Env Heal A 73:5–22. doi: 10.1080/15287390903248604 CrossRefGoogle Scholar
  26. Casas L, Tischer C, Täubel M (2016) Pediatric asthma and the indoor microbial environment. Curr Environ Heal Reports 3:238–249. doi: 10.1007/s40572-016-0095-y CrossRefGoogle Scholar
  27. Casas L, Tischer C, Wouters IM et al (2013) Endotoxin, extracellular polysaccharides, and beta(1-3)-glucan concentrations in dust and their determinants in four European birth cohorts: results from the HITEA project. Indoor Air 23:208–218. doi: 10.1111/ina.12017 PubMedCrossRefGoogle Scholar
  28. Castellan RM, Olenchock SA, Kinsley KB, Hankinson JL (1987) Inhaled endotoxin and decreased spirometric values. An exposure-response relation for cotton dust. N Engl J Med 317:605–610. doi: 10.1056/NEJM198709033171005 PubMedCrossRefGoogle Scholar
  29. Cherid H, Foto M, Miller JD (2011) Performance of two different Limulus amebocyte lysate assays for the quantitation of fungal glucan. J Occup Environ Hyg 8:540–3. doi: 10.1080/15459624.2011.601994 PubMedCrossRefGoogle Scholar
  30. Cherrie JW, Semple S, Christopher Y et al (2006) How important is inadvertent ingestion of hazardous substances at work? Ann Occup Hyg 50:693–704. doi: 10.1093/annhyg/mel035 PubMedGoogle Scholar
  31. Christiani DC, Velazquez A, Wilcox M, Olenchock SA (1993) Airborne endotoxin concentrations in various work areas within a cotton mill in Central America. Environ Res 60:187–192. doi: 10.1006/enrs.1993.1026 PubMedCrossRefGoogle Scholar
  32. Christiani DC, Ye TT, Wegman DH et al (1994) Pulmonary function among cotton textile workers. A study of variability in symptom reporting, across-shift drop in FEV1, and longitudinal change. Chest 105:1713–21. doi: 10.1378/chest.105.6.1713 PubMedCrossRefGoogle Scholar
  33. Chun DT, Bartlett K, Gordon T et al (2006) History and results of the two inter-laboratory round robin endotoxin assay studies on cotton dust. Am J Ind Med 49:301–306. doi: 10.1002/ajim.20266 PubMedCrossRefGoogle Scholar
  34. Coggins MA, Hogan VJ, Kelly M et al (2012) Workplace exposure to bioaerosols in podiatry clinics. Ann Occup Hyg 56:746–753. doi: 10.1093/annhyg/mer124 PubMedGoogle Scholar
  35. Cyprowski M, Ławniczek-Wałczyk A, Górny RL (2015a) Airborne peptidoglycans as a supporting indicator of bacterial contamination in a metal processing plant. Int J Occup Med Environ Health 29:427–437. doi: 10.13075/ijomeh.1896.00594 CrossRefGoogle Scholar
  36. Cyprowski M, Sobala W, Buczyńska A, Szadkowska-Stańczyk I (2015b) Endotoxin exposure and changes in short-term pulmonary function among sewage workers. Int J Occup Med Environ Health 28:803–811. doi: 10.13075/ijomeh.1896.00460 PubMedCrossRefGoogle Scholar
  37. Dales R, Miller D, Ruest K et al (2006) Airborne endotoxin is associated with respiratory illness in the first 2 years of life. Environ Health Perspect 114:610–614. doi: 10.1289/ehp.8142 PubMedCrossRefGoogle Scholar
  38. Dales RE, Miller D, White J (1999) Testing the association between residential fungus and health using ergosterol measures and cough recordings. Mycopathologia 147:21–7PubMedCrossRefGoogle Scholar
  39. Dassonville C, Demattei C, Vacquier B et al (2008) Indoor airborne endotoxin assessment in homes of Paris newborn babies. Indoor Air 18:480–7. doi: 10.1111/j.1600-0668.2008.00549.x PubMedCrossRefGoogle Scholar
  40. Debarry J, Garn H, Hanuszkiewicz A et al (2007) Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties. J Allergy Clin Immunol 119:1514–1521. doi: 10.1016/j.jaci.2007.03.023 PubMedCrossRefGoogle Scholar
  41. DECOS (2010) Endotoxins: health based recommended exposure limit. A report of the Health Council of the Netherlands, publication no. 2010/04OSH. Health Council of the Netherlands, The Hague.Google Scholar
  42. DECOS (2011) Grain dust: Health-based recommended occupational exposure limit. A report of the Health Council of the Netherlands, publication no. 2011/13. Health Council of the Netherlands, The Hague.Google Scholar
  43. Dharmage S, Bailey M, Raven J et al (2001) Current indoor allergen levels of fungi and cats, but not house dust mites, influence allergy and asthma in adults with high dust mite exposure. Am J Respir Crit Care Med 164:65–71. doi: 10.1164/ajrccm.164.1.9911066 PubMedCrossRefGoogle Scholar
  44. Di Luzio NR (1979) Lysozyme, glucan-activated macrophages and neoplasia. J Reticuloendothel Soc 26:67–81PubMedGoogle Scholar
  45. Ding JL, Navas MA, Ho B (1995) Molecular cloning and sequence analysis of factor C cDNA from the Singapore horseshoe crab, Carcinoscorpius rotundicauda. Mol Mar Biol Biotechnol 4:90–103PubMedGoogle Scholar
  46. Donham KJ, Cumro D, Reynolds SJ, Merchant JA (2000) Dose-response relationships between occupational aerosol exposures and cross-shift declines of lung function in poultry workers: recommendations for exposure limits. J Occup Environ Med 42:260–269PubMedCrossRefGoogle Scholar
  47. Douwes J (2005) (1-->3)-Beta-D-glucans and respiratory health: a review of the scientific evidence. Indoor Air 15:160–169. doi: 10.1111/j.1600-0668.2005.00333.x PubMedCrossRefGoogle Scholar
  48. Douwes J, Doekes G, Heinrich J et al (1998) Endotoxin and β(1→3)-glucan in house dust and the relation with home characteristics: a pilot study in 25 german houses. Indoor Air 8:255–263. doi: 10.1111/j.1600-0668.1998.00006.x CrossRefGoogle Scholar
  49. Douwes J, Doekes G, Montijn R et al (1996) Measurement of beta(1-->3)-glucans in occupational and home environments with an inhibition enzyme immunoassay. Appl Env Microbiol 62:3176–3182Google Scholar
  50. Douwes J, Thorne P, Pearce N, Heederik D (2003) Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg 47:187–200. doi: 10.1093/annhyg/meg032 PubMedGoogle Scholar
  51. Douwes J, van der Sluis B, Doekes G et al (1999) Fungal extracellular polysaccharides in house dust as a marker for exposure to fungi: relations with culturable fungi, reported home dampness, and respiratory symptoms. J Allergy Clin Immunol 103:494–500. doi: 10.1016/S0091-6749(99)70476-8 PubMedCrossRefGoogle Scholar
  52. Douwes J, van Strien R, Doekes G et al (2006) Does early indoor microbial exposure reduce the risk of asthma? The prevention and incidence of asthma and mite allergy birth cohort study. J Allergy Clin Immunol 117:1067–1073. doi: 10.1016/j.jaci.2006.02.002 PubMedCrossRefGoogle Scholar
  53. Douwes J, Zuidhof A, Doekes G et al (2000) (1-->3)-beta-D-glucan and endotoxin in house dust and peak flow variability in children. Am J Respir Crit Care Med 162:1348–54. doi: 10.1164/ajrccm.162.4.9909118 PubMedCrossRefGoogle Scholar
  54. Eder W, Klimecki W, Yu L et al (2004) Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol 113:482–8. doi: 10.1016/j.jaci.2003.12.374 PubMedCrossRefGoogle Scholar
  55. Eduard W, Douwes J, Omenaas E, Heederik D (2004) Do farming exposures cause or prevent asthma? Results from a study of adult Norwegian farmers. Thorax 59:381–386PubMedPubMedCentralCrossRefGoogle Scholar
  56. Eduard W, Pearce N, Douwes J (2009) Chronic bronchitis, COPD, and lung function in farmers: the role of biological agents. Chest 136:716–725. doi: 10.1378/chest.08-2192 PubMedCrossRefGoogle Scholar
  57. Ege MJ, Bieli C, Frei R et al (2006) Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. J Allergy Clin Immunol 117:817–823. doi: 10.1016/j.jaci.2005.12.1307 PubMedCrossRefGoogle Scholar
  58. Ege MJ, Mayer M, Normand A-C et al (2011) Exposure to environmental microorganisms and childhood asthma. N Engl J Med 364:701–709. doi: 10.1056/NEJMoa1007302 PubMedCrossRefGoogle Scholar
  59. Elholm G, Omland Ø, Sigsgaard T et al (2011) Endotoxin exposure protects against new onset of pollen sensitisation. Eur Respir J 38:p3315Google Scholar
  60. Fang SC, Mehta AJ, Hang JQ et al (2013) Cotton dust, endotoxin and cancer mortality among the Shanghai textile workers cohort: a 30-year analysis. Occup Environ Med 70:722–9. doi: 10.1136/oemed-2012-100950 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Finkelman MA, Tamura H (2005) Detection and measurement of (1→3)-beta-D-glucan with Limulus amebocyte lysate-based reagents. In: Young S-H, Castranova V (eds) Toxicology of 1→3-Beta-Glucans: Glucans as a Marker for Fungal Exposure. CRC Press, Taylor & Francis Group, Boca Raton, USA, pp 179–198Google Scholar
  62. Fishwick D, Allan LJ, Wright A, Curran AD (2001) Assessment of exposure to organic dust in a hemp processing plant. Ann Occup Hyg 45:577–83PubMedCrossRefGoogle Scholar
  63. Forteza R, Lauredo IT, Burch R, Abraham WM (1994) Extracellular metabolites of Pseudomonas aeruginosa produce bronchoconstriction by different mechanisms. Am J Respir Crit Care Med 149:687–693. doi: 10.1164/ajrccm.149.3.8118638 PubMedCrossRefGoogle Scholar
  64. Frankel M, Bekö G, Timm M et al (2012a) Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate. Appl Environ Microbiol 78:8289–8297. doi: 10.1128/AEM.02069-12 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Frankel M, Timm M, Hansen EW, Madsen AM (2012b) Comparison of sampling methods for the assessment of indoor microbial exposure. Indoor Air 22:405–414. doi: 10.1111/j.1600-0668.2012.00770.x PubMedCrossRefGoogle Scholar
  66. Garcia J, Bennett DH, Tancredi D et al (2013) Occupational exposure to particulate matter and endotoxin for California dairy workers. Int J Hyg Environ Health 216:56–62. doi: 10.1016/j.ijheh.2012.04.001 PubMedCrossRefGoogle Scholar
  67. Gehring U, Bischof W, Schlenvoigt G et al (2004) Exposure to house dust endotoxin and allergic sensitization in adults. Allergy 59:946–952. doi: 10.1111/j.1398-9995.2004.00551.x PubMedCrossRefGoogle Scholar
  68. Gehring U, Douwes J, Doekes G et al (2001) Beta(1-->3)-glucan in house dust of German homes: housing characteristics, occupant behavior, and relations with endotoxins, allergens, and molds. Environ Health Perspect 109:139–44PubMedPubMedCentralGoogle Scholar
  69. Gereda JE, Leung DY, Thatayatikom A et al (2000) Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitisation in infants at high risk of asthma. Lancet 355:1680–1683. doi:S014067360002239X. [pii]PubMedCrossRefGoogle Scholar
  70. Gilbert Y, Veillette M, Mériaux A et al (2010) Metalworking fluid-related aerosols in machining plants. J Occup Environ Hyg 7:280–289. doi: 10.1080/15459621003680227 PubMedCrossRefGoogle Scholar
  71. Giovannangelo M, Gehring U, Nordling E et al (2007) Determinants of house dust endotoxin in three European countries – the AIRALLERG study. Indoor Air 17:70–79. doi: 10.1111/j.1600-0668.2006.00461.x PubMedCrossRefGoogle Scholar
  72. Gladding T, Thorn J, Stott D (2003) Organic dust exposure and work-related effects among recycling workers. Am J Ind Med 43:584–91. doi: 10.1002/ajim.10220 PubMedCrossRefGoogle Scholar
  73. Gorman NgM, Semple S, Cherrie JW et al (2012) The relationship between inadvertent ingestion and dermal exposure pathways: a new integrated conceptual model and a database of dermal and oral transfer efficiencies. Ann Occup Hyg 56:1000–12. doi: 10.1093/annhyg/mes041 Google Scholar
  74. Halstensen AS, Heldal KK, Wouters IM et al (2013) Exposure to grain dust and microbial components in the norwegian grain and compound feed industry. Ann Occup Hyg 57:1105–1114. doi: 10.1093/annhyg/met036 PubMedGoogle Scholar
  75. Harper M, Andrew ME (2006) Airborne endotoxin in woodworking (joinery) shops. J Env Monit 8:73–78. doi: 10.1039/b508065g CrossRefGoogle Scholar
  76. Hawley B, Schaeffer J, Poole JA et al (2015) Differential response of human nasal and bronchial epithelial cells upon exposure to size-fractionated dairy dust. J Toxicol Environ Heal Part A 78:583–594. doi: 10.1080/15287394.2015.1015699 CrossRefGoogle Scholar
  77. Hinz D, Simon JC, Maier-Simon C et al (2010) Reduced maternal regulatory T cell numbers and increased T helper type 2 cytokine production are associated with elevated levels of immunoglobulin E in cord blood. Clin Exp Allergy 40:419–426. doi: 10.1111/j.1365-2222.2009.03434.x PubMedCrossRefGoogle Scholar
  78. Holst G, Host A, Doekes G et al (2015a) Determinants of house dust, endotoxin, and beta-(1-->3)-D-glucan in homes of Danish children. Indoor Air 25:245–259. doi: 10.1111/ina.12143 PubMedCrossRefGoogle Scholar
  79. Holst GJ, Høst A, Doekes G, et al (2015b) Allergy and respiratory health effects of dampness and dampness-related agents in schools and homes: a cross-sectional study in Danish pupils. Indoor Air 1–12. doi: 10.1111/ina.12275
  80. Ingalls RR, Heine H, Lien E et al (1999) Lipopolysaccharide recognition, CD14, and lipopolysaccharide receptors. Infect Dis Clin North Am 13:341–53. viiPubMedCrossRefGoogle Scholar
  81. Jacobs JH, Krop EJM, Borras-Santos A et al (2014) Endotoxin levels in settled airborne dust in European schools: the HITEA school study. Indoor Air 24:148–57. doi: 10.1111/ina.12064 PubMedCrossRefGoogle Scholar
  82. Jorna TH, Borm PJ, Valks J et al (1994) Respiratory symptoms and lung function in animal feed workers. Chest 106:1050–1055PubMedCrossRefGoogle Scholar
  83. Karvonen AM, Hyvärinen A, Rintala H et al (2014) Quantity and diversity of environmental microbial exposure and development of asthma: a birth cohort study. Allergy 69:1092–101. doi: 10.1111/all.12439 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kihlstrom A, Lilja G, Pershagen G, Hedlin G (2003) Exposure to high doses of birch pollen during pregnancy, and risk of sensitization and atopic disease in the child. Allergy 58:871–877PubMedCrossRefGoogle Scholar
  85. Lappalainen MHJ, Hyvärinen A, Hirvonen M-R et al (2012) High indoor microbial levels are associated with reduced Th1 cytokine secretion capacity in infancy. Int Arch Allergy Immunol 159:194–203. doi: 10.1159/000335596 PubMedCrossRefGoogle Scholar
  86. Larsson KA, Eklund AG, Hansson LO et al (1994) Swine dust causes intense airways inflammation in healthy subjects. Am J Respir Crit Care Med 150:973–977. doi: 10.1164/ajrccm.150.4.7921472 PubMedCrossRefGoogle Scholar
  87. Latza U, Oldenburg M, Baur X (2004) Endotoxin exposure and respiratory symptoms in the cotton textile industry. Arch Env Heal 59:519–525. doi: 10.1080/00039890409605168 CrossRefGoogle Scholar
  88. Lauener RP, Birchler T, Adamski J et al (2002) Expression of CD14 and Toll-like receptor 2 in farmers’ and non-farmers’ children. Lancet 360:465–466. doi: 10.1016/S0140-6736(02)09641-1 PubMedCrossRefGoogle Scholar
  89. Lazaridou A, Biliaderis CG (2007) Molecular aspects of cereal β-glucan functionality: physical properties, technological applications and physiological effects. J Cereal Sci 46:101–118. doi: 10.1016/j.jcs.2007.05.003 CrossRefGoogle Scholar
  90. Lebron F, Vassallo R, Puri V, Limper AH (2003) Pneumocystis carinii cell wall beta-glucans initiate macrophage inflammatory responses through NF-kappaB activation. J Biol Chem 278:25001–8PubMedCrossRefGoogle Scholar
  91. Lenters V, Basinas I, Beane-Freeman L et al (2010) Endotoxin exposure and lung cancer risk: a systematic review and meta-analysis of the published literature on agriculture and cotton textile workers. Cancer Causes Control 21:523–555. doi: 10.1007/s10552-009-9483-z PubMedCrossRefGoogle Scholar
  92. Li D, Zhong YN, Rylander R et al (1995) Longitudinal study of the health of cotton workers. Occup Environ Med 52:328–31PubMedPubMedCentralCrossRefGoogle Scholar
  93. Li W, Ray RM, Gao DL et al (2006) Occupational risk factors for nasopharyngeal cancer among female textile workers in Shanghai, China. Occup Environ Med 63:39–44. doi: 10.1136/oem.2005.021709 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Liebers V, Raulf-Heimsoth M, Brüning T (2008) Health effects due to endotoxin inhalation (review). Arch Toxicol 82:203–210. doi: 10.1007/s00204-008-0290-1 PubMedCrossRefGoogle Scholar
  95. Liu AH (2002) Endotoxin exposure in allergy and asthma: reconciling a paradox. J Allergy Clin Immunol 109:379–392PubMedCrossRefGoogle Scholar
  96. Madsen AM (2006) Airborne endotoxin in different background environments and seasons. Ann Agric Environ Med 13:81–86PubMedGoogle Scholar
  97. Madsen AM, Hansen VM, Nielsen SH, Olsen TT (2009) Exposure to dust and endotoxin of employees in cucumber and tomato nurseries. Ann Occup Hyg 53:129–138. doi: 10.1093/annhyg/men073 PubMedGoogle Scholar
  98. Madsen AM, Tendal K, Schlunssen V, Heltberg I (2012) Organic dust toxic syndrome at a grass seed plant caused by exposure to high concentrations of bioaerosols. Ann Occup Hyg 56:776–788. doi: 10.1093/annhyg/mes012 PubMedPubMedCentralGoogle Scholar
  99. Mahauthaman R, Howell CJ, Spur BW et al (1988) The generation and cellular distribution of leukotriene C4 in human eosinophils stimulated by unopsonized zymosan and glucan particles. J Allergy Clin Immunol 81:696–705PubMedCrossRefGoogle Scholar
  100. Malmberg P, Larsson K (1993) Acute exposure to swine dust causes bronchial hyperresponsiveness in healthy subjects. Eur Respir J Off J Eur Soc Clin Respir Physiol 6:400–404Google Scholar
  101. Mandryk J, Alwis KU, Hocking AD (1999) Work-related symptoms and dose-response relationships for personal exposures and pulmonary function among woodworkers. Am J Ind Med 35:481–90PubMedCrossRefGoogle Scholar
  102. Marchand G, Lalonde M, Beaudet Y et al (2007) Documentation of the endotoxins present in the ambient air of cotton fiber textile mills in Québec. J Env Monit 9:869. doi: 10.1039/b704087c CrossRefGoogle Scholar
  103. McElvenny DM, Hurley MA, Lenters V et al (2011) Lung cancer mortality in a cohort of UK cotton workers: an extended follow-up. Br J Cancer 105:1054–1060. doi: 10.1038/bjc.2011.312 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Mehta AJ, Wang XR, Eisen EA et al (2007) Work area measurements as predictors of personal exposure to endotoxin and cotton dust in the cotton textile industry. Ann Occup Hyg 52:45–54. doi: 10.1093/annhyg/mem061 PubMedGoogle Scholar
  105. Meroueh SO, Bencze KZ, Hesek D et al (2006) Three-dimensional structure of the bacterial cell wall peptidoglycan. Proc Natl Acad Sci U S A 103:4404–9. doi: 10.1073/pnas.0510182103 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Miller JD, Young JC (1997) The use of ergosterol to measure exposure to fungal propagules in indoor air. Am Ind Hyg Assoc J 58:39–43. doi: 10.1080/15428119791013062 PubMedCrossRefGoogle Scholar
  107. Milton DK, Alwis KU, Fisette L, Muilenberg M (2001) Enzyme-linked immunosorbent assay specific for (1-->6) branched, (1-->3)-beta-D-glucan detection in environmental samples. Appl Environ Microbiol 67:5420–4. doi: 10.1128/AEM.67.12.5420-5424.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Miura NN (2005) Fate of β-glucans in vivo. In: Toxicol. 1 - 3-beta-glucans. Informa Healthcare, pp 109–126Google Scholar
  109. Noss I, Doekes G, Sander I et al (2010a) Passive airborne dust sampling with the electrostatic dustfall collector: optimization of storage and extraction procedures for endotoxin and glucan measurement. Ann Occup Hyg 54:651–658. doi: 10.1093/annhyg/meq026 PubMedGoogle Scholar
  110. Noss I, Wouters IM, Bezemer G et al (2010b) beta-(1,3)-Glucan exposure assessment by passive airborne dust sampling and new sensitive immunoassays. Appl Environ Microbiol 76:1158–1167. doi: 10.1128/AEM.01486-09 PubMedCrossRefGoogle Scholar
  111. Noss I, Wouters IM, Visser M et al (2008) Evaluation of a low-cost electrostatic dust fall collector for indoor air endotoxin exposure assessment. Appl Environ Microbiol 74:5621–7. doi: 10.1128/AEM.00619-08 PubMedPubMedCentralCrossRefGoogle Scholar
  112. O’Garra A, Vieira P (2004) Regulatory T cells and mechanisms of immune system control. Nat Med 10:801–805. doi: 10.1038/nm0804-801 PubMedCrossRefGoogle Scholar
  113. O’Shaughnessy PT, Donham KJ, Peters TM et al (2010) A task-specific assessment of Swine worker exposure to airborne dust. J Occup Env Hyg 7:7–13. doi: 10.1080/15459620903327970 CrossRefGoogle Scholar
  114. OSHA (1995) Subpart Z - Toxic and hazardous substances. Standard Num: 1910.1000. In: Occupational Safety and Health Standards part 1910. Available via Accessed 05. Occupational Safety and Health Administration.
  115. Park JH, Cox-Ganser JM, Kreiss K et al (2008) Hydrophilic fungi and ergosterol associated with respiratory illness in a water-damaged building. Environ Health Perspect 116:45–50. doi: 10.1289/ehp.10355 PubMedCrossRefGoogle Scholar
  116. Park J-H, Spiegelman DL, Burge HA et al (2000) Longitudinal study of dust and airborne endotoxin in the home. Environ Health Perspect 108:1023–1028. doi: 10.1289/ehp.001081023 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Paudyal P, Semple S, Niven R et al (2011) Exposure to dust and endotoxin in textile processing workers. Ann Occup Hyg 55:403–409. doi: 10.1093/annhyg/meq084 PubMedGoogle Scholar
  118. Poole JA, Dooley GP, Saito R et al (2010) Muramic acid, endotoxin, 3-hydroxy fatty acids, and ergosterol content explain monocyte and epithelial cell inflammatory responses to agricultural dusts. J Toxicol Env Heal A 73:684–700. doi: 10.1080/15287390903578539 CrossRefGoogle Scholar
  119. Portengen L, Preller L, Tielen M et al (2005) Endotoxin exposure and atopic sensitization in adult pig farmers. J Allergy Clin Immunol 115:797–802. doi: 10.1016/j.jaci.2004.11.046 PubMedCrossRefGoogle Scholar
  120. Prefontaine D, Banville-Langelier A-A, Fiset P-O et al (2010) Children with atopic histories exhibit impaired lipopolysaccharide-induced Toll-like receptor-4 signalling in peripheral monocytes. Clin Exp Allergy 40:1648–1657. doi: 10.1111/j.1365-2222.2010.03570.x PubMedCrossRefGoogle Scholar
  121. Radon K, Danuser B, Iversen M et al (2002) Air contaminants in different European farming environments. Ann Agric Env Med 9:41–48Google Scholar
  122. Reed CE, Milton DK (2016) Endotoxin-stimulated innate immunity: a contributing factor for asthma. J Allergy Clin Immunol 108:157–166. doi: 10.1067/mai.2001.116862 CrossRefGoogle Scholar
  123. Renz H, Blumer N, Virna S et al (2006) The immunological basis of the hygiene hypothesis. Chem Immunol Allergy 91:30–48. doi: 10.1159/000090228 PubMedCrossRefGoogle Scholar
  124. Reynolds SJ, Black DW, Borin SS et al (2001) Indoor environmental quality in six commercial office buildings in the midwest United States. Appl Occup Env Hyg 16:1065–1077. doi: 10.1080/104732201753214170 CrossRefGoogle Scholar
  125. Rylander R (1997) Airborne (1→3)-β-d-glucan and airway disease in a day-care center before and after renovation. Arch Environ Heal An Int J 52:281–285. doi: 10.1080/00039899709602199 CrossRefGoogle Scholar
  126. Rylander R (2006) Endotoxin and occupational airway disease. Curr Opin Allergy Clin Immunol 6:62–66. doi: 10.1097/01.all.0000202356.83509.f7 PubMedCrossRefGoogle Scholar
  127. Rylander R, Bergstrom R (1993) Bronchial reactivity among cotton workers in relation to dust and endotoxin exposure. Ann Occup Hyg 37:57–63PubMedGoogle Scholar
  128. Rylander R, Norrhall M, Engdahl U et al (1998) Airways inflammation, atopy, and (1--> 3)-beta-D-glucan exposures in two schools. Am J Respir Crit Care Med 158:1685–7. doi: 10.1164/ajrccm.158.5.9712139 PubMedCrossRefGoogle Scholar
  129. Rylander R, Persson K, Goto H et al (1992) Airborne beta-1,3-glucan may be related to symptoms in sick buildings. Indoor Built Environ 1:263–267. doi: 10.1177/1420326X9200100502 CrossRefGoogle Scholar
  130. Rylander R, Thorn J, Attefors R (1999) Airways inflammation among workers in a paper industry. Eur Respir J Off J Eur Soc Clin Respir Physiol 13:1151–1157Google Scholar
  131. Sabroe I, Read RC, Whyte MKB et al (2003) Toll-like receptors in health and disease: complex questions remain. J Immunol 171:1630–1635PubMedCrossRefGoogle Scholar
  132. Saito K, Nishijima M, Ohno N et al (1992) Activation of complement and limulus coagulation systems by an alkali-soluble glucan isolated from omphalia lapidescens and its less-branched derivatives. (studies on fungal polysaccharide. XXXIX). Chem Pharm Bull (Tokyo) 40:1227–1230CrossRefGoogle Scholar
  133. Saito R, Cranmer BK, Tessari JD et al (2009) Recombinant factor C (rFC) assay and gas chromatography/mass spectrometry (GC/MS) analysis of endotoxin variability in four agricultural dusts. Ann Occup Hyg 53:713–722. doi: 10.1093/annhyg/mep052 PubMedGoogle Scholar
  134. Samadi S, Heederik DJ, Krop EJ et al (2010) Allergen and endotoxin exposure in a companion animal hospital. Occup Env Med 67:486–492. doi: 10.1136/oem.2009.051342 CrossRefGoogle Scholar
  135. Samadi S, Rietbroek NNJ, Dwars RM et al (2011) Endotoxin and beta-(1 --> 3)-glucan exposure in poultry and ruminant clinics. J Environ Monit 13:3254–3261. doi: 10.1039/c1em10566c PubMedCrossRefGoogle Scholar
  136. Samadi S, van Eerdenburg FJ, Jamshidifard AR et al (2012) The influence of bedding materials on bio-aerosol exposure in dairy barns. J Expo Sci Env Epidemiol 22:361–368. doi: 10.1038/jes.2012.25 CrossRefGoogle Scholar
  137. Samadi S, Wouters IM, Houben R et al (2009) Exposure to inhalable dust, endotoxins, beta(1->3)-glucans, and airborne microorganisms in horse stables. Ann Occup Hyg 53:595–603. doi: 10.1093/annhyg/mep040 PubMedGoogle Scholar
  138. Sander I, Fleischer C, Borowitzki G et al (2008) Development of a two-site enzyme immunoassay based on monoclonal antibodies to measure airborne exposure to (1-->3)-beta-D-glucan. J Immunol Methods 337:55–62. doi: 10.1016/j.jim.2008.05.010 PubMedCrossRefGoogle Scholar
  139. Saraf A, Larsson L, Burge H, Milton D (1997) Quantification of ergosterol and 3-hydroxy fatty acids in settled house dust by gas chromatography-mass spectrometry: comparison with fungal culture and determination of endotoxin by a Limulus amebocyte lysate assay. Appl Env Microbiol 63:2554–2559Google Scholar
  140. Savilahti EM, Karinen S, Salo HM et al (2010) Combined T regulatory cell and Th2 expression profile identifies children with cow’s milk allergy. Clin Immunol 136:16–20. doi: 10.1016/j.clim.2010.02.011 PubMedCrossRefGoogle Scholar
  141. Schaub B, Lauener R, von Mutius E (2006) The many faces of the hygiene hypothesis. J Allergy Clin Immunol 117:969–77. doi: 10.1016/j.jaci.2006.03.003. quiz 978PubMedCrossRefGoogle Scholar
  142. Schram D, Doekes G, Boeve M et al (2005) Bacterial and fungal components in house dust of farm children, Rudolf Steiner school children and reference children--the PARSIFAL Study. Allergy 60:611–618. doi: 10.1111/j.1398-9995.2005.00748.x PubMedCrossRefGoogle Scholar
  143. Schram-Bijkerk D, Doekes G, Douwes J et al (2005) Bacterial and fungal agents in house dust and wheeze in children: the PARSIFAL study. Clin Exp Allergy 35:1272–1278. doi: 10.1111/j.1365-2222.2005.02339.x PubMedCrossRefGoogle Scholar
  144. Schwartz DA, Thorne PS, Yagla SJ et al (1995) The role of endotoxin in grain dust-induced lung disease. Am J Respir Crit Care Med 152:603–608. doi: 10.1164/ajrccm.152.2.7633714 PubMedCrossRefGoogle Scholar
  145. Semple S, Devakumar D, Fullerton DG et al (2010) Airborne endotoxin concentrations in homes burning biomass fuel. Environ Health Perspect 118:988–91. doi: 10.1289/ehp.0901605 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Senthilselvan A, Beach J, Feddes J et al (2011) A prospective evaluation of air quality and workers’ health in broiler and layer operations. Occup Env Med 68:102–107. doi: 10.1136/oem.2008.045021 CrossRefGoogle Scholar
  147. Senthilselvan A, Zhang Y, Dosman JA et al (1997) Positive human health effects of dust suppression with canola oil in swine barns. Am J Respir Crit Care Med 156:410–417PubMedCrossRefGoogle Scholar
  148. Sigsgaard T, Bonefeld-Jorgensen EC, Hoffmann HJ et al (2005) Microbial cell wall agents as an occupational hazard. Toxicol Appl Pharmacol 207:310–319. doi: 10.1016/j.taap.2004.12.031 PubMedCrossRefGoogle Scholar
  149. Sigsgaard T, Heederik D (2005) On the hygiene hypothesis: regulation down, up, or sideways? J Allergy Clin Immunol 115:1325–6. author reply 1326PubMedCrossRefGoogle Scholar
  150. Sigsgaard T, Jensen LD, Abell A et al (2004) Endotoxins isolated from the air of a Danish paper mill and the relation to change in lung function: an 11-year follow-up. Am J Ind Med 46:327–332. doi: 10.1002/ajim.20068 PubMedCrossRefGoogle Scholar
  151. Sigsgaard T, Omland Ø, Thorne PS, Parnham MJ (2010) Asthma-like diseases in agriculture. In: Sigsgaard T, Heederik D (eds) Occup. Asthma. Birkhauser Basel, Basel, Switzerland, pp 163–183Google Scholar
  152. Simpson JC, Niven RM, Pickering CA et al (1999) Comparative personal exposures to organic dusts and endotoxin. Ann Occup Hyg 43:107–115. doi: S0003487898000830 [pii] PubMedCrossRefGoogle Scholar
  153. Singh U, Levin L, Grinshpun SA et al (2011) Influence of home characteristics on airborne and dustborne endotoxin and β-D-glucan. J Environ Monit 13:3246–53. doi: 10.1039/c1em10446b PubMedCrossRefGoogle Scholar
  154. Smit LA, Heederik D, Doekes G et al (2008) Exposure-response analysis of allergy and respiratory symptoms in endotoxin-exposed adults. Eur Respir J 31:1241–1248. doi: 10.1183/09031936.00090607 PubMedCrossRefGoogle Scholar
  155. Smit LA, Wouters IM, Hobo MM et al (2006) Agricultural seed dust as a potential cause of organic dust toxic syndrome. Occup Env Med 63:59–67. doi: 10.1136/oem.2005.021527 CrossRefGoogle Scholar
  156. Smit LAM, Heederik D, Doekes G et al (2010) Occupational endotoxin exposure reduces the risk of atopic sensitization but increases the risk of bronchial hyperresponsiveness. Int Arch Allergy Immunol 152:151–158. doi: 10.1159/000265536 PubMedCrossRefGoogle Scholar
  157. Spaan S, Heederik DJ, Thorne PS, Wouters IM (2007) Optimization of airborne endotoxin exposure assessment: effects of filter type, transport conditions, extraction solutions, and storage of samples and extracts. Appl Env Microbiol 73:6134–6143. doi: 10.1128/AEM.00851-07 CrossRefGoogle Scholar
  158. Spaan S, Schinkel J, Wouters IM et al (2008a) Variability in endotoxin exposure levels and consequences for exposure assessment. Ann Occup Hyg 52:303–316. doi: 10.1093/annhyg/men024 PubMedGoogle Scholar
  159. Spaan S, Smit LAM, Eduard W et al (2008b) Endotoxin exposure in sewage treatment workers: investigation of exposure variability and comparison of analytical techniques. Ann Agric Environ Med 15:251–261PubMedGoogle Scholar
  160. Spaan S, Wouters IM, Oosting I et al (2006) Exposure to inhalable dust and endotoxins in agricultural industries. J Env Monit 8:63–72. doi: 10.1039/b509838f CrossRefGoogle Scholar
  161. Spierenburg A, Smit L, Robbe P, et al (2016) Occupational endotoxin exposure dose-dependently protects against atopy and hay fever: Results of a longitudinal study. Eur. Respir. J. 48:Google Scholar
  162. Stern DA, Riedler J, Nowak D et al (2007) Exposure to a farming environment has allergen-specific protective effects on TH2-dependent isotype switching in response to common inhalants. J Allergy Clin Immunol 119:351–358. doi: 10.1016/j.jaci.2006.10.013 PubMedCrossRefGoogle Scholar
  163. Szadkowska-Stańczyk I, Bródka K, Buczyńska A et al (2010) Exposure to bioaerosols among CAFO workers (swine feeding). Med Pr 61:257–69PubMedGoogle Scholar
  164. Szepfalusi Z, Loibichler C, Pichler J et al (2000) Direct evidence for transplacental allergen transfer. Pediatr Res 48:404–407PubMedCrossRefGoogle Scholar
  165. Thilsing T, Madsen AM, Basinas I et al (2015) Dust, endotoxin, fungi, and bacteria exposure as determined by work task, season, and type of plant in a flower greenhouse. Ann Occup Hyg 59:142–57. doi: 10.1093/annhyg/meu090 PubMedGoogle Scholar
  166. Thorn J, Beijer L, Rylander R (1998) Airways inflammation and glucan exposure among household waste collectors. Am J Ind Med 33:463–470. doi: 10.1002/(SICI)1097-0274(199805)33:5<463::AID-AJIM5>3.0.CO;2-T [pii] PubMedCrossRefGoogle Scholar
  167. Thorn J, Rylander R (1998) Airways inflammation and glucan in a rowhouse area. Am J Respir Crit Care Med 157:1798–803. doi: 10.1164/ajrccm.157.6.9706081 PubMedCrossRefGoogle Scholar
  168. Thorne PS, Perry SS, Saito R et al (2010) Evaluation of the Limulus amebocyte lysate and recombinant factor C assays for assessment of airborne endotoxin. Appl Env Microbiol 76:4988–4995. doi: 10.1128/AEM.00527-10 CrossRefGoogle Scholar
  169. Tischer C, Gehring U, Chen CM et al (2011) Respiratory health in children, and indoor exposure to (1,3)-β-D- glucan, EPS mould components and endotoxin. Eur Respir J 37:1050–1059. doi: 10.1183/09031936.00091210 PubMedCrossRefGoogle Scholar
  170. Vandenbulcke L, Bachert C, Van Cauwenberge P, Claeys S (2006) The innate immune system and its role in allergic disorders. Int Arch Allergy Immunol 139:159–165. doi: 10.1159/000090393 PubMedCrossRefGoogle Scholar
  171. Van Strien RT, Engel R, Holst O et al (2004) Microbial exposure of rural school children, as assessed by levels of N-acetyl-muramic acid in mattress dust, and its association with respiratory health. J Allergy Clin Immunol 113:860–867. doi: 10.1016/j.jaci.2004.01.783 PubMedCrossRefGoogle Scholar
  172. Vogelzang PFJ, Van Der Gulden JWJ, Folgering H et al (2000) Longitudinal changes in bronchial responsiveness associated with swine confinement dust exposure. Chest 117:1488–1495. doi: 10.1378/chest.117.5.1488 PubMedCrossRefGoogle Scholar
  173. Vollmer W, Blanot D, De Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32:149–167. doi: 10.1111/j.1574-6976.2007.00094.x PubMedCrossRefGoogle Scholar
  174. Von Mutius, Braun-Fahrländer, Schierl et al (2000) Exposure to endotoxin or other bacterial components might protect against the development of atopy. Clin Exp Allergy 30:1230–1234. doi: 10.1046/j.1365-2222.2000.00959.x CrossRefGoogle Scholar
  175. Wan GH, Li CS (1999) Indoor endotoxin and glucan in association with airway inflammation and systemic symptoms. Arch Environ Health 54:172–9. doi: 10.1080/00039899909602256 PubMedCrossRefGoogle Scholar
  176. Wang XR, Pan LD, Zhang HX et al (2002) Follow-up study of respiratory health of newly-hired female cotton textile workers. Am J Ind Med 41:111–118. doi: 10.1002/ajim.10042 PubMedCrossRefGoogle Scholar
  177. Wang Z, Larsson K, Palmberg L et al (1997) Inhalation of swine dust induces cytokine release in the upper and lower airways. Eur Respir J Off J Eur Soc Clin. Respir Physiol 10:381–387Google Scholar
  178. Wang Z, Malmberg P, Ek A et al (1999) Swine dust induces cytokine secretion from human epithelial cells and alveolar macrophages. Clin Exp Immunol 115:6–12PubMedPubMedCentralCrossRefGoogle Scholar
  179. Williams DL (1997) Overview of (1→3)-β-D-glucan immunobiology. Mediators Inflamm 6:247–250. doi: 10.1080/09629359791550 PubMedPubMedCentralCrossRefGoogle Scholar
  180. Williams DL, Lowman DW, Ensley HE (2005) Introduction to the chemistry and immunobiology of _ -glucans. In: Toxicol. 1 - 3-Beta-Glucans. Informa Healthcare, pp 1–34Google Scholar
  181. Williams KL (2007a) Endotoxin relevance and control overview. In: Williams KL (ed) Endotoxins pyrogens, LAL test. depyrogenation. Informa Healthcare, New York, USA, p 27–45Google Scholar
  182. Williams KL (2007b) Endotoxin structure, function, and activity. In: Williams KL (ed) Endotoxins pyrogens, LAL test. depyrogenation. Informa Healthcare USA, Inc, New York, USA, p 67–90Google Scholar
  183. Wouters IM, Spaan S, Douwes J et al (2006) Overview of personal occupational exposure levels to inhalable dust, endotoxin, beta(1-->3)-glucan and fungal extracellular polysaccharides in the waste management chain. Ann Occup Hyg 50:39–53. doi: 10.1093/annhyg/mei047 PubMedGoogle Scholar
  184. Zeković DB, Kwiatkowski S, Vrvić MM et al (2005) Natural and modified (1→3)-β-d-glucans in health promotion and disease alleviation. Crit Rev Biotechnol 25:205–230. doi: 10.1080/07388550500376166 PubMedCrossRefGoogle Scholar
  185. Zhang K, Petty HR (1994) Influence of polysaccharides on neutrophil function: specific antagonists suggest a model for cooperative saccharide-associated inhibition of immune complex-triggered superoxide production. J Cell Biochem 56:225–35PubMedCrossRefGoogle Scholar
  186. Zhao Z, Sebastian A, Larsson L et al (2008) Asthmatic symptoms among pupils in relation to microbial dust exposure in schools in Taiyuan, China. Pediatr Allergy Immunol 19:455–65. doi: 10.1111/j.1399-3038.2007.00664.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ioannis Basinas
    • 1
    Email author
  • Grethe Elholm
    • 2
  • Inge M. Wouters
    • 3
  1. 1.Centre for Human Exposure Science, Institute of Occupational MedicineEdinburghUnited Kingdom
  2. 2.Department of Public Health, Section for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus UniversityAarhusDenmark
  3. 3.Division of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations