Advertisement

Viruses Present Indoors and Analyses Approaches

  • Edna RibeiroEmail author
  • Céu Leitão
  • Elisabete Cristovam
  • Ana Dias
Chapter

Abstract

Through human history viruses have shown enormous epidemiological and pandemic potential as the occurrence and spread of viruses in pandemic dimensions poses a threat to the health and lives of seven billion people worldwide. Scientific evidence has associated harmful health effects to indoor air hazards recognizing the existence of a vital concern in public health sector. Thus the assessment of human exposure to biological aerosols and droplets indoor became an imperative requirement of investigation. Environmental bioburden assessment of viruses relies in both culture-dependent approaches that comprise classical methodologies, still prominent and vital in the field of modern biotechnology, and culture-independent approaches based on nucleic acid amplification techniques, which are considered the gold standard in clinical virology. The main factor influencing indoor microbiology is the human being and their activities. Indoor environments to be considered are those regularly occupied by humans: residences, offices, schools, industrial buildings, health care facilities, farming activities and other settings occupied all the time, or in which occupant density is high. It’s well known that approximately 60% of total human respiratory and gastrointestinal infections are acquired indoor, since viruses have a rapid spread in the community and can be transmitted easily, especially in crowded and poorly ventilated environments, causing high morbidity and decline in quality of life and productivity. Studies have shown that respiratory syncytial virus, rhinovirus, metapneumovirus, influenza and parainfluenza virus, and human enterovirus infections may be associated with virus-induced asthma, leading to diseases such as pneumonia. Gastroenteritis infectious (about 30±40% of cases) is attributable to viruses. Rotavirus, Astrovirus, Norwalk-like viruses and other caliciviruses are responsible for 48% of all reported outbreaks of infectious intestinal disease. Safe working conditions are essential for healthy living, that’s why the programmes conceived as a result of strategic and preventive policy maintenance, in refrigeration and ventilation systems, are the determining factor for the control of biological pollutants. Moreover, the development of highly sensitive and specific detection and identification methodologies with capacity to be used in diverse applications, such as diagnosis, public health risk assessment, research and for the implementation of preventive measures and protocols are imperative.

Keywords

Viruses indoor air transmission culture-dependent virus analysis culture-independent virus analysis environmental assessment 

References

  1. Anderson EJ, Weber SG (2004 Feb) Rotavirus infection in adults. Lancet Infect Dis 4(2):91–9CrossRefPubMedGoogle Scholar
  2. Artenstein MS, Miller WS (1966) Air sampling for respiratory disease agents in army recruits. Bacteriol Rev 30(3):571–572PubMedPubMedCentralGoogle Scholar
  3. Ballow M (2008) Approach to the patient with recurrent infections. Clin Rev Allergy Immunol 34(2):129–140CrossRefPubMedGoogle Scholar
  4. Barker J, Stevens D, Bloomfield SF (2001) Spread and prevention of some common viral infections in community facilities and domestic homes. J Appl Microbiol 91:7–21CrossRefPubMedGoogle Scholar
  5. Begier EM, Oberste MS, Landry ML et al (2008) An outbreak of concurrent echovirus 30 and coxsackievirus A1 infections associated with sea swimming among a group of travelers to Mexico. Clin Infect Dis 47(5):616–623. doi: 10.1086/590562 CrossRefPubMedGoogle Scholar
  6. Bernstein DI (2009) Rotavirus overview. Pediatr Infect Dis J 28(3):50–53CrossRefGoogle Scholar
  7. Canonica GW, Ciprandi G, Pesce GP et al (1995) ICAM-1 on epithelial cells in allergic subjects: a hallmark of allergic inflammation. Int Arch Allergy Immunol 107(1–3):99–102CrossRefPubMedGoogle Scholar
  8. Carducci A, Verani M, Lombardi R et al (2011) Environmental survey to assess viral contamination of air and surfaces in hospital settings. Journal of Hospital Infection 77(3):242–247. doi: 10.1016/j.jhin.2010.10.010 CrossRefPubMedGoogle Scholar
  9. Celli BR, Macnee W (2004) Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 23:932–946CrossRefPubMedGoogle Scholar
  10. Celli BR, Barnes PJ (2007) Exacerbations of chronic obstructive pulmonary disease. Eur Respir J. 29(6):1224–1238CrossRefPubMedGoogle Scholar
  11. Chang LY, Tsao KC, Hsia SH et al (2004) Transmission and clinical features of enterovirus 71 infections in household contacts in Taiwan. JAMA 291(2):222–227CrossRefPubMedGoogle Scholar
  12. Chen SC, Chio CP, Jou LJ et al (2009) Viral kinetics and exhaled droplet size affect indoor transmission dynamics of influenza infection. Indoor Air 19:401–413CrossRefPubMedGoogle Scholar
  13. Chen SC, Liao CM (2010) Probabilistic indoor transmission modeling for influenza (sub) type viruses. J Infect 60(1):26–35CrossRefPubMedGoogle Scholar
  14. Cormier Y (2007) Respiratory health and farming: an essay. Can Respir J 14(7):419–422CrossRefPubMedPubMedCentralGoogle Scholar
  15. D’Arcy N, Cloutman-Green E, Klein N et al (2014) Environmental viral contamination in a pediatric hospital outpatient waiting area: implications for infection control. Am J Infect Control 42(8):856–860. doi: 10.1016/j.ajic.2014.04.014 CrossRefPubMedGoogle Scholar
  16. Douwes J, Thorene P, Pearce N et al (2003) Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg 47:187–200PubMedGoogle Scholar
  17. Fisk WJ, Lei-Gomez Q, Mendell MJ (2007) Meta-analyses of the associations of respiratory health effects with dampness and mold in homes. Indoor Air 17(4):284–296CrossRefPubMedGoogle Scholar
  18. Fongaro G, Nascimento MA, Viancelli A et al (2012) Surveillance of human viral contamination and physicochemical profiles in a surface water lagoon. Water Sci Technol. 66(12):2683–2687. doi: 10.2166/wst.2012.504 CrossRefGoogle Scholar
  19. Gallimore CI, Taylor C, Gennery AR et al (2006) Environmental monitoring for gastroenteric viruses in a pediatric primary immunodeficiency unit. J Clin Microbiol 44(2):395–399. doi: 10.1128/JCM.44.2.395 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gallimore CI, Taylor C, Gennery AR et al (2008) Contamination of the hospital environment with gastroenteric viruses: comparison of two pediatric wards over a winter season. J Clin Microbiol 46(9):3112–3115. doi: 10.1128/JCM.00400-08 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ganime AC, Carvalho-Costa FA, Mendonça MCL et al (2012) Group A rotavirus detection on environmental surfaces in a hospital intensive care unit. Am J Infect Control 40(6):544–547. doi: 10.1016/j.ajic.2011.07.017 CrossRefPubMedGoogle Scholar
  22. Goh GK, Dunker AK, Uversky V (2013) Prediction of intrinsic disorder in MERS-CoV/HCoV-EMC supports a high oral-fecal transmission. PLoS Curr 13(1):1–63Google Scholar
  23. Goyal SM, Anantharaman S, Ramakrishnan MA et al (2011) Detection of viruses in used ventilation filters from two large public buildings. Am J Infect Control 39(7):e30–e38. doi: 10.1016/j.ajic.2010.10.036 CrossRefPubMedGoogle Scholar
  24. Gray GC (2006) Adenovirus transmission – worthy of our attention. J Infect Dis 194(7):871–873CrossRefPubMedPubMedCentralGoogle Scholar
  25. Green KY, Ando T, Balayan MS et al (2000) Taxonomy of the caliciviruses. J Infect Dis 181(2):322–330CrossRefGoogle Scholar
  26. Hall RJ, Mily LM, Wang J et al (2013) Metagenomic detection of viruses in aerosol samples from workers in animal slaughterhouses. PLoS One 8(8):1–8Google Scholar
  27. Hanski I, von Hertzen L, Fyhrquist N et al (2012) Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci U S A 109(21):8334–8339CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hanssen SO (2004) HVAC – the importance of clean intake section and dry air filter in cold climate. Indoor Air 14(7):195–201CrossRefPubMedGoogle Scholar
  29. Heikkinen T, Jarvinen A (2003) The common cold. Lancet 361:51–59CrossRefPubMedGoogle Scholar
  30. Hui DS, Chan PK (2010) Severe acute respiratory syndrome and coronavirus. Infect Dis Clin North Am 24(3):619–638CrossRefPubMedGoogle Scholar
  31. Huynh KN, Oliver BG, Stelzer S et al (2008) A new method for sampling and detection of exhaled respiratory virus aerosols. Clin Infect Dis 46(1):93–95CrossRefPubMedGoogle Scholar
  32. Ibfelt T, Engelund EH, Schultz AC et al (2015) Effect of cleaning and disinfection of toys on infectious diseases and micro-organisms in daycare nurseries. J Hosp Infect 89(2):109–115. doi: 10.1016/j.jhin.2014.10.007 CrossRefPubMedGoogle Scholar
  33. Ignatius TS, Yu, Li Y et al (2004) Evidence of airborne transmission of the severe acute respiratory syndrome virus. N Engl J Med 350:1731–1739CrossRefGoogle Scholar
  34. Jianqiang Zhang PCG (2014) Isolation of swine influenza virus in cell cultures and embryonated chicken eggs. Methods Mol Biol. 1161:265–276. doi: 10.1007/978-1-4939-0758-8_22 CrossRefPubMedGoogle Scholar
  35. Jones AP (1999) Indoor air quality and health. Atmos Environ 33(28):4535–4564CrossRefGoogle Scholar
  36. Katayama H, Shimasaki A, Katayama H et al (2002) Development of a virus concentration method and its application to detection of enterovirus and Norwalk Virus from Coastal Seawater. Appl Environ Microbiol 68(3):1033–1039. doi: 10.1128/AEM.68.3.1033 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kim KY, Ko HJ, Lee KJ et al (2005) Temporal and spatial distributions of aerial contaminants in an enclosed pig building in winter. Environ Res 99(2):150–157CrossRefPubMedGoogle Scholar
  38. Kizek R, Krejcova L, Michalek P et al (2015) Nanoscale virus biosensors: state of the art. Nanobiosensors Dis Diagn 4:47. doi: 10.2147/NDD.S56771 CrossRefGoogle Scholar
  39. Klepeis NE, Nelson WC, Ott WR et al (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 11:231–252CrossRefPubMedGoogle Scholar
  40. La Rosa G, Fratini M, Della Libera S et al (2013) Viral infections acquired indoors through airborne, droplet or contact transmission. Ann Ist Super Sanità 49(2):124–132PubMedGoogle Scholar
  41. Lax S, Smith DP, Hampton-Marcell J et al (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345:1048–1052CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lee ByungUk, Hong InGi, Lee DaeHee et al (2012) Bacterial bioaerosol concentrations in public restroom environments. Aerosol Air Qual Res 12:251–255Google Scholar
  43. Lee T, Grinshpun SA, Martuzevicius D et al (2006) Relationship between indoor and outdoor bioaerosols collected with a button inhalable aerosol sampler in urban homes. Indoor Air 16(1):37–47CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lessa FC, Gould PL, Pascoe N et al (2009) Health care transmission of a newly emergent adenovirus serotype in health care person nel at a military hospital in Texas. J Infect Dis 200(11):1759–1765CrossRefPubMedGoogle Scholar
  45. Li Fang (2013) Receptor recognition and cross-species infections of SARS coronavirus. Antiviral Res 100(1):246–254CrossRefPubMedGoogle Scholar
  46. Ling WX, Juan S, Qin SQ et al (2016) Viral contamination source in clinical microbiology laboratory. Biomed Environ Sci 29(8):609–611. doi: 10.3967/bes2016.082 Google Scholar
  47. MacIntyre CR, Ridda I, Seale H et al (2012) Respiratory viruses transmission from children to adults within a household. Vaccine 30(19):3009–3014CrossRefPubMedGoogle Scholar
  48. Manbeck HB, Hofstetter DW, Murphy DJ et al (2016) Online design aid for evaluating manure pit ventilation systems to reduce entry risk. Fronti Public Health 4(108):1–16Google Scholar
  49. Morillo SG, Timenetsky Mdo C (2011) Norovirus: an overview. Rev Assoc Med Bras 57(4):453–458CrossRefPubMedGoogle Scholar
  50. Nazaroff WW (2016) Indoor bioaerosol dynamics. Indoor Air 26(1):61–78CrossRefPubMedGoogle Scholar
  51. Osuolale O, Okoh A (2015) Incidence of human adenoviruses and hepatitis A virus in the final effluent of selected wastewater treatment plants in Eastern Cape Province, South Africa. Virol J 12(98):1–8Google Scholar
  52. Paba P, Farchi F, Mortati E et al (2014) Screening of respiratory pathogens by Respiratory Multi Well System (MWS) r-gene™ assay in hospitalized patients. New Microbiologica 37:231–236PubMedGoogle Scholar
  53. Poutanen SM, Low DE, Henry B et al (2003) Identification of severe acute respiratory syndrome in Canada. N Engl J Med 348:1995–2005CrossRefPubMedGoogle Scholar
  54. Prado T, Silva DM, Guilayn WC et al (2011) Quantification and molecular characterization of enteric viruses detected in effluents from two hospital wastewater treatment plants. Water Res 45(3):1287–1297. doi: 10.1016/j.watres.2010.10.012 CrossRefPubMedGoogle Scholar
  55. Prussin II AJ, Garcia EB, Marr LC (2015) Total virus and bacteria concentrations in indoor and outdoor. Environ Sci Technol 2(4):84–88CrossRefGoogle Scholar
  56. Reeve KA, Peters TM, Anthony TR (2013) Wintertime factors affecting contaminant distribution in a swine farrowing room. J Occup Environ Hyg 10(6):287–296CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rodríguez RA, Gundy PM, Rijal GK et al (2012) The impact of combined sewage overflows on the viral contamination of receiving waters. Food Environ Virol 4(1):34–40. doi: 10.1007/s12560-011-9076-3 CrossRefPubMedGoogle Scholar
  58. Shin GA, Sobsey MD (2008) Inactivation of norovirus by chlorine disinfection of water. Water Res 42(17):4562–4568. doi: 10.1016/j.watres.2008.08.001 CrossRefPubMedGoogle Scholar
  59. Sibanda T, Okoh AI (2012) Assessment of the incidence of enteric adenovirus species and serotypes in surface waters in the Eastern Cape Province of South Africa: Tyume River as a case study. ScientificWorldJournal 949216:1–9CrossRefGoogle Scholar
  60. Silva HD, Melo MR (2010) Artículo original Avaliação de métodos de concentração e detecção molecular de adenovírus em águas não tratadas – uma metanálise, 65–71.Google Scholar
  61. Soule H, Genoulaz O, Gratacap-Cavallier B et al (1999) Monitoring rotavirus environmental contamination in a paediatric unit using polymerase chain reaction. Infect Control Hosp Epidemiol 20:432–434CrossRefPubMedGoogle Scholar
  62. Srikanth P, Sudharsanam S, Steinberg R (2008) Bio-aerosols In indoor environment: composition, health effects and analysis. Indian J Med Microbiol 26(4):302–312CrossRefPubMedGoogle Scholar
  63. Tantilipikorn P, Auewarakul P (2011) Airway allergy and viral infection. Asian Pac J Allergy Immunol 29:113–119PubMedGoogle Scholar
  64. Tellier R (2009) Aerosol transmission of influenza A virus: a review of new studies. J R Soc Interface 6:783–790CrossRefGoogle Scholar
  65. Tseng CC, Chang LY, Li C (2010) Detection of airborne viruses in a pediatrics department measured using real-time qPCR coupled to an air-sampling filter method. J Environ Health 73(4):22–28PubMedGoogle Scholar
  66. Tsukagoshi H, Ishioka T, Noda M et al (2013) Molecular epidemiology of respiratory viruses in virus-induced asthma. Front Microbiol 4(278):1–10Google Scholar
  67. Uhnoo I, Svensson L, Wadell G (1990) Enteric adenoviruses. Baillieres Clin Gastroenterol 4(3):627–642CrossRefPubMedGoogle Scholar
  68. von Mutius E (2004) Influences in allergy: epidemiology and the environment. J Allergy Clin Immunol 113(3):373–379CrossRefGoogle Scholar
  69. World Health Organization. (2010). Limiting spread. Retrieved from http://www.who.int/influenza/resources/research/research_agenda_influenza_stream_2_limiting_spread.pdf
  70. Yang W, Elankumaran S, Marr LC (2011) Concentrations and size distributions of airborn e influenza A viruses measured indoors at a health centre, a day-care centre and on aeroplanes. J R Soc Interface 8:1176–1184CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zhang CM, Wang XC, Liu YJ et al (2008) Characteristics of bacterial and viral contamination of urban waters: a case study in Xi’an, China. Water Sci Technol. 58(3):653–660. 10.2166/wst.2008.438CrossRefPubMedGoogle Scholar
  72. Zhao H, Joseph C, Phin N (2007) Outbreaks of influenza and influenza-like illness in schools in England and Wales, 2005/06. Euro Surveill 12(5):3–4CrossRefGoogle Scholar
  73. Zhou LF, Zhu HH, Lin J et al (2006) Surveillance of viral contamination of invasive medical instruments in dentistry. J Zhejiang Univ Sci B 7(9):745–748. doi: 10.1631/jzus.2006.B0745 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zlateva KT, Maes P, Rahman M et al (2005) Chromatography paper strip sampling of enteric adenoviruses type 40 and 41 positive stool specimens. Virol J 2(6):1–5Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Edna Ribeiro
    • 1
    • 2
    Email author
  • Céu Leitão
    • 3
  • Elisabete Cristovam
    • 4
  • Ana Dias
    • 4
  1. 1.Research Center LEAF – Linking Landscape, Environment, Agriculture and Food – Instituto Superior de Agronomia, Lisbon UniversityLisbonPortugal
  2. 2.Research Group Environment & Health, Lisbon School of Health Technology/Polytechnic Institute of LisbonLisbonPortugal
  3. 3.Lisbon School of Health Technology/Polytechnic Institute of Lisbon Lisbon PortugalLisbonPortugal
  4. 4.Centro Hospitalar Lisboa Ocidental, Hospital Egas Moniz, Microbiology and Molecular Biology Laboratory, Rua da JunqueiraLisbonPortugal

Personalised recommendations