Advertisement

Analysis Approaches for Fungi in Indoor Environmental Assessments

  • Jacob Mensah-AttipoeEmail author
  • Martin Täubel
Chapter

Abstract

The challenge of fungal measurements in indoor environments is complex. Almost all studies that have used several methods for the assessment of fungal exposure have only observed moderate or weak correlation between them. These variations can be explained by the fungal life cycle with differences in spore release and the variation in the characteristics of spores of different species, and with differences in the target molecules used by the various fungal exposure assessment methods. Therefore, the use of different analysis methods will provide a different perspective on the stages of fungal growth and quantity.

Keywords

Fungi indoor biomass markers glucan ergosterol quantitative PCR NAHA microscopy cultivation real-time monitoring 

References

  1. Adams RI, Amend AS, Taylor JW et al (2013a) A unique signal distorts the perception of species richness and composition in high-throughput sequencing surveys of microbial communities: a case study of fungi in indoor dust. Microb Ecol 66(4):735–741PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adams RI, Bhangar S, Pasut W et al (2015) Chamber bioaerosol study: outdoor air and human occupants as sources of indoor airborne microbes. PLoS One 10(5):e0128022PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adams RI, Miletto M, Taylor JW et al (2013b) Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J 7(7):1262–1273PubMedPubMedCentralCrossRefGoogle Scholar
  4. Adams RI, Miletto M, Taylor JW et al (2013c) The diversity and distribution of fungi on residential surfaces. PLoS One 8(11):e78866PubMedPubMedCentralCrossRefGoogle Scholar
  5. Amann RI, Ludwig W, Schleifer K (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169PubMedPubMedCentralGoogle Scholar
  6. Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19(24):5555–5565PubMedCrossRefGoogle Scholar
  7. Bauer H, Schueller E, Weinke G et al (2008) Significant contributions of fungal spores to the organic carbon and to the aerosol mass balance of the urban atmospheric aerosol. Atmos Environ 42(22):5542–5549CrossRefGoogle Scholar
  8. Bridge P, Spooner B (2001) Soil fungi: diversity and detection. Plant Soil 232(1-2):147–154CrossRefGoogle Scholar
  9. Burge H, Otten J, Fungi JM et al (1999) Bioaerosols: assessment and control. In: Anonymous American Conference of Governmental Industrial Hygienists (ACGIH), vol 19., p 1–13Google Scholar
  10. Burge HA (1995) Bioaerosols. CRC PressGoogle Scholar
  11. Buttner MP, Cruz P, Stetzenbach LD et al (2007) Evaluation of two surface sampling methods for detection of Erwinia herbicola on a variety of materials by culture and quantitative PCR. Appl Environ Microbiol 73(11):3505–3510PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chao HJ, Milton DK, Schwartz J et al (2002) Dustborne fungi in large office buildings. Mycopathologia 154(2):93–106PubMedCrossRefGoogle Scholar
  13. Cox MJ, Cookson WO, Moffatt MF (2013) Sequencing the human microbiome in health and disease. Hum Mol Genet 22(R1):R88–94PubMedCrossRefGoogle Scholar
  14. Coz E, Artíñano B, Clark LM et al (2010) Characterization of fine primary biogenic organic aerosol in an urban area in the northeastern United States. Atmos Environ 44(32):3952–3962CrossRefGoogle Scholar
  15. Dacarro C, Picco A, Grisoli P et al (2003) Determination of aerial microbiological contamination in scholastic sports environments. J Appl Microbiol 95(5):904–912PubMedCrossRefGoogle Scholar
  16. Dannemiller KC, Gent JF, Leaderer BP et al (2016a) Indoor microbial communities: influence on asthma severity in atopic and nonatopic children. J Allergy Clin Immunol 138(1):76–83-e1PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dannemiller KC, Mendell MJ, Macher JM et al (2014a) Next-generation DNA sequencing reveals that low fungal diversity in house dust is associated with childhood asthma development. Indoor Air 24(3):236–247PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dannemiller KC, Reeves D, Bibby K et al (2014b) Fungal High-throughput Taxonomic Identification tool for use with Next-Generation Sequencing (FHiTINGS). J Basic Microbiol 54(4):315–321PubMedCrossRefGoogle Scholar
  19. Dannemiller KC, Gent JF, Leaderer BP et al (2016b) Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children. Indoor Air 26(2):179–192PubMedCrossRefGoogle Scholar
  20. Davitt K, Song Y, Patterson III W et al (2005) 290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles. Opt Express 13(23):9548–9555PubMedCrossRefGoogle Scholar
  21. De Carolis E, Posteraro B, Lass-Flörl C et al (2012) Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect 18(5):475–484PubMedCrossRefGoogle Scholar
  22. Després V, Nowoisky J, Klose M et al (2007) Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosciences 4(6):1127–1141CrossRefGoogle Scholar
  23. Dillon HK, Boling DK, Miller JD (2007) Comparison of detection methods for Aspergillus fumigatus in environmental air samples in an occupational environment. J Occup Environ Hyg 4(7):509–513PubMedCrossRefGoogle Scholar
  24. Douwes J, van der Sluis B, Doekes G et al (1999) Fungal extracellular polysaccharides in house dust as a marker for exposure to fungi: relations with culturable fungi, reported home dampness, and respiratory symptoms. J Allergy Clin Immunol 103:494–500PubMedCrossRefGoogle Scholar
  25. Douwes J (2005) (1→3)-β-D-glucans and respiratory health: a review of the scientific evidence. Indoor Air 15(3):160–169PubMedCrossRefGoogle Scholar
  26. Douwes J, Doekes G, Heinrich J et al (1998) Endotoxin and β (1 → 3)-Glucan in House Dust and the Relation with Home Characteristics: A Pilot Study in 25 German Houses. Indoor Air 8(4):255–263CrossRefGoogle Scholar
  27. Douwes J, Zuidhof A, Doekes G et al (2000) (1 → 3)-β-D-glucan and endotoxin in house dust and peak flow variability in children. Am J Resp Crit Care Med 162(4):1348–1354PubMedCrossRefGoogle Scholar
  28. Douwes J, Doekes G, Montijn R et al (1996) Measurement of beta (1→3)-glucans in occupational and home environments with an inhibition enzyme immunoassay. Appl Environ Microbiol 62(9):3176–3182PubMedPubMedCentralGoogle Scholar
  29. Douwes J, Thorne P, Pearce N et al (2003) Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg 47(3):187–200PubMedGoogle Scholar
  30. Eduard W, Sandven P, Johansen BV et al (1988) Identification and quantification of mould spores by scanning electron microscopy (SEM): analysis of filter samples collected in Norwegian saw mills. Ann Occup Hyg 32(inhaled particles VI):447–455Google Scholar
  31. Eduard W, Halstensen AS (2009) Quantitative exposure assessment of organic dust. Scand J Work Environ Health. Supplement (7):30.Google Scholar
  32. Elbert W, Taylor P, Andreae M et al (2007) Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos Chem Phys 7(17):4569–4588CrossRefGoogle Scholar
  33. Elston DM (2001) Fluorescence of fungi in superficial and deep fungal infections. BMC Microbiol 1:21PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ettenauer J, Piñar G, Tafer H et al (2014) Quantification of fungal abundance on cultural heritage using real time PCR targeting the β-actin gene. Front Microbiol 5.Google Scholar
  35. Ettenauer JD, Pinar G, Lopandic K et al (2012) Microbes on building materials – evaluation of DNA extraction protocols as common basis for molecular analysis. Sci Total Environ 439:44–53PubMedCrossRefGoogle Scholar
  36. Foto M, Vrijmoed L, Miller J et al (2005) A comparison of airborne ergosterol, glucan and Air-O-Cell data in relation to physical assessments of mold damage and some other parameters. Indoor Air 15(4):257–266PubMedCrossRefGoogle Scholar
  37. Foto M, Plett J, Berghout J et al (2004) Modification of the Limulus amebocyte lysate assay for the analysis of glucan in indoor environments. Anal Bioanal Chem 379(1):156–162PubMedCrossRefGoogle Scholar
  38. Frohlich-Nowoisky J, Pickersgill DA, Despres VR et al (2009) High diversity of fungi in air particulate matter. Proc Natl Acad Sci U S A 106(31):12814–12819PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gabey A, Gallagher M, Whitehead J et al (2010) Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual channel fluorescence spectrometer. Atmos Chem Phys 10(10):4453–4466CrossRefGoogle Scholar
  40. Ganzlin M, Marose S, Lu X et al (2007) In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures. J Biotechnol 132(4):461–468PubMedCrossRefGoogle Scholar
  41. Gehring U, Heinrich J, Hoek G et al (2007) Bacteria and mould components in house dust and children’s allergic sensitisation. Eur Respir J 29(6):1144–1153PubMedCrossRefGoogle Scholar
  42. Goebes MD, Hildemann LM, Kujundzic E et al (2007) Real-time PCR for detection of the Aspergillus genus. J Environ Monitor 9(6):599–609CrossRefGoogle Scholar
  43. Gonzalez JM, Saiz-Jimenez C (2004) Microbial diversity in biodeteriorated monuments as studied by denaturing gradient gel electrophoresis. J Separ Sci 27(3):174–180CrossRefGoogle Scholar
  44. Górny RL, Reponen T, Willeke K et al (2002) Fungal fragments as indoor air biocontaminants. Appl Environ Microbiol 68(7):3522–3531PubMedPubMedCentralCrossRefGoogle Scholar
  45. Green BJ, Millecchia LL, Blachere FM et al (2006) Dual fluorescent halogen immunoassay for bioaerosols using confocal microscopy. Anal Biochem 354(1):151–153PubMedCrossRefGoogle Scholar
  46. Green BJ, Schmechel D, Summerbell RC (2011) Aerosolized fungal fragments. In: Anonymous fundamentals of mold growth in indoor environments and strategies for healthy living. Springer, p. 211–243Google Scholar
  47. Green BJ, Sercombe JK, Tovey ER (2005) Fungal fragments and undocumented conidia function as new aeroallergen sources. J Allergy Clin Immunol 115(5):1043–1048PubMedCrossRefGoogle Scholar
  48. Gutarowska B, Piotrowska M (2007) Methods of mycological analysis in buildings. Build Environ 42(4):1843–1850CrossRefGoogle Scholar
  49. Hairston PP, Ho J, Quant FR (1997) Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence. J Aerosol Sci 28(3):471–482PubMedCrossRefGoogle Scholar
  50. Haugland RA, Varma M, Wymer LJ et al (2004) Quantitative PCR analysis of selected Aspergillus, Penicillium and Paecilomyces Species. Syst Appl Microbiol 27(2):198–210PubMedCrossRefGoogle Scholar
  51. Healy D, Huffman J, O’Connor D et al (2014) Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques. Atmos Chem Phys 14(15):8055–8069CrossRefGoogle Scholar
  52. Herrera ML, Vallor AC, Gelfond JA et al (2009) Strain-dependent variation in 18S ribosomal DNA Copy numbers in Aspergillus fumigatus. J Clin Microbiol 47(5):1325–1332PubMedPubMedCentralCrossRefGoogle Scholar
  53. Heseltine E, Rosen J (2009) WHO guidelines for indoor air quality: dampness and mould. WHO Regional Office Europe.Google Scholar
  54. Hill SC, Pan Y, Williamson C et al (2013) Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria. Opt Express 21(19):22285–22313PubMedCrossRefGoogle Scholar
  55. Ho H, Rao CY, Hsu H et al (2005) Characteristics and determinants of ambient fungal spores in Hualien, Taiwan. Atmos Environ 39(32):5839–5850CrossRefGoogle Scholar
  56. Huber JA, Morrison HG, Huse SM et al (2009) Effect of PCR amplicon size on assessments of clone library microbial diversity and community structure. Environ Microbiol 11(5):1292–1302PubMedPubMedCentralCrossRefGoogle Scholar
  57. Iossifova Y, Reponen T, Daines M et al (2008) Comparison of two analytical methods for detecting (1-3)-β-D-glucan in pure fungal cultures and in home dust samples. Open Allergy J 1:26–34CrossRefGoogle Scholar
  58. Iossifova YY, Reponen T, Ryan PH et al (2009) Mold exposure during infancy as a predictor of potential asthma development. Ann Allergy Asthma Immunol 102(2):131–137PubMedCrossRefGoogle Scholar
  59. Iossifova Y, Reponen T, Bernstein D et al (2007) House dust (1–3)-β-d-glucan and wheezing in infants. Allergy 62(5):504–513PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kaarakainen P, Rintala H, Vepsäläinen A et al (2009) Microbial content of house dust samples determined with qPCR. Sci Total Environ 407(16):4673–4680PubMedCrossRefGoogle Scholar
  61. Kanaani H, Hargreaves M, Ristovski Z et al (2007) Performance assessment of UVAPS: Influence of fungal spore age and air exposure. J Aerosol Sci 38(1):83–96CrossRefGoogle Scholar
  62. Kanaani H, Hargreaves M, Smith J et al (2008) Performance of UVAPS with respect to detection of airborne fungi. J Aerosol Sci 39(2):175–189CrossRefGoogle Scholar
  63. Kanchongkittiphon W, Mendell MJ, Gaffin JM et al (2015) Indoor environmental exposures and exacerbation of asthma: an update to the 2000 review by the Institute of Medicine. Environ Health Perspect 123(1):6–20PubMedCrossRefGoogle Scholar
  64. Karlsson K, Malmberg P (1989) Characterization of exposure to molds and actinomycetes in agricultural dusts by scanning electron microscopy, fluorescence microscopy and the culture method. Scand J Work Environ Health 353–359Google Scholar
  65. Krause JD, Hammad YY, Ball LB (2003) Application of a fluorometric method for the detection of mold in indoor environments. Appl Occup Environ Hyg 18(7):499–503PubMedCrossRefGoogle Scholar
  66. Lee T, Grinshpun SA, Martuzevicius D et al (2006) Culturability and concentration of indoor and outdoor airborne fungi in six single-family homes. Atmos Environ 40(16):2902–2910PubMedCentralCrossRefGoogle Scholar
  67. Liu CM, Kachur S, Dwan MG et al (2012) FungiQuant: a broad-coverage fungal quantitative real-time PCR assay. BMC Microbiol 12:255PubMedPubMedCentralCrossRefGoogle Scholar
  68. Low SY, Hill JE, Peccia J (2009) DNA aptamers bind specifically and selectively to (1 → 3)-β-d-glucans. Biochem Biophys Res Commun 378(4):701–705PubMedCrossRefGoogle Scholar
  69. Lymperopoulou DS, Adams RI, Lindow SE (2016) Contribution of vegetation to the microbial composition of nearby outdoor air. Appl Environ Microbiol 82(13):3822–3833PubMedPubMedCentralCrossRefGoogle Scholar
  70. Madsen A (2003) NAGase activity in airborne biomass dust and relationship between NAGase concentrations and fungal spores. Aerobiologia 19(2):97–105CrossRefGoogle Scholar
  71. Madsen AM, Schlunssen V, Olsen T et al (2009) Airborne fungal and bacterial components in PM1 dust from biofuel plants. Ann Occup Hyg 53(7):749–757PubMedPubMedCentralGoogle Scholar
  72. Matthias-Maser S, Jaenicke R (1991) A method to identify biological aerosol particles with radius> 0.3 μm for the determination of their size distribution. J Aerosol Sci 22:S849–S852CrossRefGoogle Scholar
  73. Matthias-Maser S, Jaenicke R (1994) Examination of atmospheric bioaerosol particles with radii> 0.2 μm. J Aerosol Sci 25(8):1605–1613CrossRefGoogle Scholar
  74. Méjean G, Kasparian J, Yu J et al (2004) Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system. Appl Phys B 78(5):535–537CrossRefGoogle Scholar
  75. Meklin T, Haugland RA, Reponen T et al (2004) Quantitative PCR analysis of house dust can reveal abnormal mold conditions. J Environ Monitor 6(7):615–620CrossRefGoogle Scholar
  76. Meklin T, Reponen T, McKinstry C et al (2007) Comparison of mold concentrations quantified by MSQPCR in indoor and outdoor air sampled simultaneously. Sci Total Environ 382(1):130–134PubMedPubMedCentralCrossRefGoogle Scholar
  77. Mendell MJ, Mirer AG, Cheung K et al (2011) Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence. Environ Health Perspect 119(6):748PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mensah-Attipoe J, Reponen T, Salmela A et al (2015) Susceptibility of green and conventional building materials to microbial growth. Indoor Air 25(3):273–284PubMedCrossRefGoogle Scholar
  79. Mensah-Attipoe J, Reponen T, Veijalainen A et al (2016a) Comparison of methods for assessing temporal variation of growth of fungi on building materials. Microbiol 162(11):1895–1903CrossRefGoogle Scholar
  80. Mensah-Attipoe J, Saari S, Veijalainen A et al (2016b) Release and characteristics of fungal fragments in various conditions. Sci Total Environ 547:234–243PubMedCrossRefGoogle Scholar
  81. Metzker ML (2010) Sequencing technologies – the next generation. Nature Rev Genet 11(1):31–46PubMedCrossRefGoogle Scholar
  82. Mille-Lindblom C, von Wachenfeldt E, Tranvik LJ (2004) Ergosterol as a measure of living fungal biomass: persistence in environmental samples after fungal death. J Microbiol Methods 59(2):253–262PubMedCrossRefGoogle Scholar
  83. Miller J, Laflamme A, Sobol Y et al (1988) Fungi and fungal products in some Canadian houses. Internat Biodeterior 24(2):103–120CrossRefGoogle Scholar
  84. Moularat S, Robine E, Ramalho O et al (2008) Detection of fungal development in closed spaces through the determination of specific chemical targets. Chemosphere 72(2):224–232PubMedCrossRefGoogle Scholar
  85. Noterman S, Soentoro PS (1986) Immunological relationship of extra-cellular polysaccharide antigens produced by different mould species. Antonie Van Leeuwnhoek 52:393–401CrossRefGoogle Scholar
  86. O’Connor DJ, Iacopino D, Healy DA et al (2011) The intrinsic fluorescence spectra of selected pollen and fungal spores. Atmos Environ 45(35):6451–6458CrossRefGoogle Scholar
  87. Palmgren U (1986) Collection of airborne micro-organisms on Nuclepore filters, estimation and analysis – CAMNEA method. J Appl Bacteriol Oxford 61(5):401–406CrossRefGoogle Scholar
  88. Park J, Cox-Ganser JM (2011) Mold exposure and respiratory health in damp indoor environments. Front Biosci E 3:575–571Google Scholar
  89. Pietarinen V, Rintala H, Hyvärinen A et al (2008) Quantitative PCR analysis of fungi and bacteria in building materials and comparison to culture-based analysis. J Environ Monitor 10(5):655–663CrossRefGoogle Scholar
  90. Piñar G, Sterflinger K (2009) Microbes and building materials. Building materials: properties, performance and applications. Nova Publishers, New York, p 163–188Google Scholar
  91. Pitkäranta M, Meklin T, Hyvärinen A et al (2011) Molecular profiling of fungal communities in moisture damaged buildings before and after remediation – a comparison of culture-dependent and culture-independent methods. BMC Microbiol 11(1):1CrossRefGoogle Scholar
  92. Pitkaranta M, Meklin T, Hyvarinen A et al (2008) Analysis of fungal flora in indoor dust by ribosomal DNA sequence analysis, quantitative PCR, and culture. Appl Environ Microbiol 74(1):233–244PubMedCrossRefGoogle Scholar
  93. Pöhlker C, Huffman J, Pöschl U (2012) Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences. Atmos Meas Tech 5(1):37–71CrossRefGoogle Scholar
  94. Raimondi V, Agati G, Cecchi G et al (2009) In vivo real-time recording of UV-induced changes in the autofluorescence of a melanin-containing fungus using a micro-spectrofluorimeter and a low-cost webcam. Opt Express 17(25):22735–22746PubMedCrossRefGoogle Scholar
  95. Rast DM, Baumgartner D, Mayer C et al (2003) Cell wall-associated enzymes in fungi. Phytochemistry 64(2):339–366PubMedCrossRefGoogle Scholar
  96. Rastogi R, Wu M, Dasgupta I et al (2009) Visualization of ribosomal RNA operon copy number distribution. BMC Microbiol 9:208. doi: 10.1186/1471-2180-9-208 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Reeslev M, Miller M, Nielsen KF (2003) Quantifying mold biomass on gypsum board: Comparison of ergosterol and beta-N-acetylhexosaminidase as mold biomass parameters. Appl Environ Microbiol 69(7):3996–3998PubMedPubMedCentralCrossRefGoogle Scholar
  98. Reponen T, Seo S, Grimsley F et al (2007) Fungal fragments in moldy houses: a field study in homes in New Orleans and Southern Ohio. Atmos Environ 41(37):8140–8149PubMedCentralCrossRefGoogle Scholar
  99. Reponen T, Willeke K, Grinshpun S et al (2011) Biological particle sampling. In: Aerosol measurement: principles, techniques, and applications, 3rd Edn. 549–570Google Scholar
  100. Rylander R (2015) β-N-Acetylhexosaminidase (NAHA) as a marker of fungal cell biomass – storage stability and relation to β-glucan. Int J Monitor Anal 3(4):205–209CrossRefGoogle Scholar
  101. Rylander R, Reeslev M, Hulander T (2010) Airborne enzyme measurements to detect indoor mould exposure. J Environ Monitor 12(11):2161CrossRefGoogle Scholar
  102. Saari S, Reponen T, Keskinen J (2014) Performance of two fluorescence-based real-time bioaerosol detectors: BioScout vs. UVAPS. Aero Sci Technol 48(4):371–378CrossRefGoogle Scholar
  103. Saari S, Putkiranta M, Keskinen J (2013) Fluorescence spectroscopy of atmospherically relevant bacterial and fungal spores and potential interferences. Atmos Environ 71:202–209CrossRefGoogle Scholar
  104. Saraf A, Larsson L, Burge H et al (1997) Quantification of ergosterol and 3-hydroxy fatty acids in settled house dust by gas chromatography-mass spectrometry: comparison with fungal culture and determination of endotoxin by a Limulus amebocyte lysate assay. Appl Environ Microbiol 63(7):2554–2559PubMedPubMedCentralGoogle Scholar
  105. Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28(2):239–242CrossRefGoogle Scholar
  106. Schaub B, Lauener R, von Mutius E (2006) The many faces of the hygiene hypothesis. J Allergy Clin Immunol 117(5):969–977PubMedCrossRefGoogle Scholar
  107. Sivaprakasam V, Huston A, Scotto C et al (2004) Multiple UV wavelength excitation and fluorescence of bioaerosols. Opt Express 12(19):4457–4466PubMedCrossRefGoogle Scholar
  108. Sonesson A, Larsson L, Fox A et al (1988) Determination of environmental levels of peptidoglycan and lipopolysaccharide using gas chromatography with negative-ion chemical-ionization mass spectrometry utilizing bacterial amino acids and hydroxy fatty acids as biomarkers. J Chromatog B: Biomed Sci Appl 431:1–15CrossRefGoogle Scholar
  109. Szponar B, Szponar A, Larsson L (2003) Direct assessment of microbial colonisation in damp houses by chemical marker analysis. Indoor Built Environ 12(4):251–254CrossRefGoogle Scholar
  110. Thorne PS, Lange JL, Bloebaum P et al (1994) Bioaerosol sampling in field studies: can samples be express mailed? Am Ind Hyg Assoc 55(11):1072–1079CrossRefGoogle Scholar
  111. Tischer C, Chen CM, Heinrich J (2011) Association between domestic mould and mould components, and asthma and allergy in children: a systematic review. Eur Respir J 38(4):812–824PubMedCrossRefGoogle Scholar
  112. Toivola M, Alm S, Reponen T et al (2002) Personal exposures and microenvironmental concentrations of particles and bioaerosols. J Environ Monitor 4(1):166–174CrossRefGoogle Scholar
  113. Tringe SG, Zhang T, Liu X et al (2008) The airborne metagenome in an indoor urban environment. PLoS One 3(4):e1862PubMedPubMedCentralCrossRefGoogle Scholar
  114. Vesper S, Wymer L, Meklin T et al (2005) Comparison of populations of mould species in homes in the UK and USA using mould-specific quantitative PCR. Lett Appl Microbiol 41(4):367–373PubMedCrossRefGoogle Scholar
  115. Vesper S (2007) Development of an Environmental Relative Moldiness Index for US Homes. J Occup Environ Med 49(8):829PubMedCrossRefGoogle Scholar
  116. Viegas C, Viegas S, Monteiro A et al (2012) Comparison of indoor and outdoor fungi and particles in poultry units. WIT Transactions on Ecology and the Environment 162Google Scholar
  117. Volckens J, Peters TM (2005) Counting and particle transmission efficiency of the aerodynamic particle sizer. J Aerosol Sci 36(12):1400–1408CrossRefGoogle Scholar
  118. von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21(3):213–229CrossRefGoogle Scholar
  119. Wittmaack K, Wehnes H, Heinzmann U et al (2005) An overview on bioaerosols viewed by scanning electron microscopy. Sci Total Environ 346(1):244–255PubMedCrossRefGoogle Scholar
  120. Wu P, Su HJ, Ho H (2000) A comparison of sampling media for environmental viable fungi collected in a hospital environment. Environ Res 82(3):253–257PubMedCrossRefGoogle Scholar
  121. Yamamoto N, Dannemiller KC, Bibby K et al (2014) Identification accuracy and diversity reproducibility associated with internal transcribed spacer-based fungal taxonomic library preparation. Environ Microbiol 16(9):2764–2776PubMedCrossRefGoogle Scholar
  122. Yamamoto N, Kimura M, Matsuki H et al (2010) Optimization of a real-time PCR assay to quantitate airborne fungi collected on a gelatin filter. J Biosci Bioeng 109(1):83–88PubMedCrossRefGoogle Scholar
  123. Young S, Castranova V (2005) Toxicology of 1-3-beta-glucans: glucans as a marker for fungal exposure. CRC PressGoogle Scholar
  124. Zeng Q, Westermark S, Rasmuson-Lestander Å et al (2006) Detection and quantification of Cladosporium in aerosols by real-time PCR. J Environ Monitor 8(1):153–160CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Environmental and Biological Sciences, University of Eastern FinlandKuopioFinland
  2. 2.Department of Health Security, National Institute for Health and WelfareKuopioFinland

Personalised recommendations