Analyses Approaches for Bacteria

Chapter

Abstract

Bacterial bioburden assessments, particularly in the context of human environmental/occupational exposure, have major implications in public health risk assessment. Several sampling methods, which must be adapted to the studied environmental context, are currently available. Culture-dependent and culture-independent methodologies have been utilized for the analysis of bacterial communities in various environments. Culture-dependent techniques drove extraordinary advances in microbiology and allow the enhancement of bacterial material to be utilized in supplementary analysis; however, these approaches may underestimate the bacterial bioburden of the studied samples. On the other hand, culture-independent approaches are considered more sensible and efficient with capacity to provide valuable information regarding bacterial diversity and quantity; nevertheless, preferential amplification and poor primers specificity can account for major limitations. In order to perform valuable and efficient assessments of bacterial bioburden booth approaches should be utilized simultaneously.

Keywords

Bacterial bioburden environmental sampling culture-dependent bacterial analysis culture-independent bacterial analysis 

References

  1. Al-Awadhi H, Dashti N, Khanafer M et al. (2013) Bias problems in culture-independent analysis of environmental bacterial communities: a representative study on hydrocarbonoclastic bacteria. SpringerPlus 2:369. doi:10.1186/2193-1801-2-369 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anderson G, Palombo EA (2009) Microbial contamination of computer keyboards in a university setting. Am J Infect Control 37(6):507–509. doi:10.1016/j.ajic.2008.10.032 CrossRefPubMedGoogle Scholar
  3. Brady RRW, Kalima P, Damani NN et al. (2007) Bacterial contamination of hospital bed control handsets in a surgical setting: A potential marker of contamination of the health care environment. Ann R Coll Surg Engl 89(7):656–660. doi:10.1308/003588407X209347 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Dahllöf I, Baillie H, Kjelleberg S (2000) rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 66(8):3376–3380. doi:10.1128/AEM.66.8.3376-3380.2000.Updated CrossRefPubMedPubMedCentralGoogle Scholar
  5. Elsayeh MM, Kandil AH, Elsayeh M (2016) Detection and identification system of bacteria and bacterial endotoxin based on raman spectroscopy. doi:10.14569/IJACSA.2016.070328
  6. Fang Z, Ouyang Z, Zheng H, Wang X, Hu L et al. (2007) Culturable airborne bacteria in outdoor environments in Beijing, China Microb Ecol 54(3):487–496. doi:10.1007/s00248-007-9216-3 CrossRefPubMedGoogle Scholar
  7. Fuhrimann S, Pham-Duc P, Cissé G et al. (2016) Microbial contamination along the main open wastewater and storm water channel of Hanoi, Vietnam, and potential health risks for urban farmers. Sci Total Environ 566:1014–1022. doi:10.1016/j.scitotenv.2016.05.080 CrossRefPubMedGoogle Scholar
  8. Ghosh B, Lal H, Srivastava A (2015) Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms. Environ Int 85:254–272. doi:10.1016/j.envint.2015.09.018 CrossRefPubMedGoogle Scholar
  9. Huang PY, Shi ZY, Chen CH et al. (2013) Airborne and surface-bound microbial contamination in two intensive care units of a medical center in central Taiwan. Aerosol Air Qual Res 13(3):1060–1069. doi:10.4209/aaqr.2012.08.0217 Google Scholar
  10. Kirby-Smith WW, White NM (2006) Bacterial contamination associated with estuarine shoreline development. J Appl Microbiol 100(4):648–657. doi:10.1111/j.1365-2672.2005.02797.x CrossRefPubMedGoogle Scholar
  11. Lee L, Tin S, Kelley ST (2007) Culture-independent analysis of bacterial diversity in a child-care facility. BMC Microbiol 7(1):27. doi:10.1186/1471-2180-7-27 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Leung MHY, Lee PKH (2016) The roles of the outdoors and occupants in contributing to a potential pan-microbiome of the built environment: a review. Microbiome 4(1):21. doi:10.1186/s40168-016-0165-2 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Martin E, Jackel U (2011) Characterization of bacterial contaminants in the air of a duck hatchery by cultivation based and molecular methods. J Environ Monit 13(2):464–470. doi:10.1039/c0em00272k CrossRefPubMedGoogle Scholar
  14. Mbim E, Mboto C, Agbo B (2016) A review of nosocomial infections in sub-Saharan Africa. Br Microbiol Res J 15(1):1–11. doi:10.9734/BMRJ/2016/25895 CrossRefGoogle Scholar
  15. Mbim E, Mboto C, Edet U (2016) Prevalence and antimicrobial susceptibility profile of bacteria isolated from the environment of two tertiary hospitals in Calabar Metropolis, Nigeria. J Adv Med Pharm Sci 10(4):1–15. doi:10.9734/JAMPS/2016/29316 CrossRefGoogle Scholar
  16. Nehmé B, Gilbert Y, Létourneau V et al. (2009) Culture-independent characterization of archaeal biodiversity in swine confinement building bioaerosols. Appl Environ Microbiol 75(17):5445–5450. doi:10.1128/AEM.00726-09 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Nehme B, Létourneau V, Forster RJ et al. (2008) Culture-independent approach of the bacterial bioaerosol diversity in the standard swine confinement buildings, and assessment of the seasonal effect. Environ Microbiol 10(3):665–675. doi:10.1111/j.1462-2920.2007.01489.x CrossRefPubMedGoogle Scholar
  18. Prakash O, Verma M, Sharma P et al. (2007) Polyphasic approach of bacterial classification - An overview of recent advances. Ind J Microbiol 47(2):98–108. doi:10.1007/s12088-007-0022-x CrossRefGoogle Scholar
  19. Stanley NJ, Kuehn TH, Kim SW et al. (2008) Background culturable bacteria aerosol in two large public buildings using HVAC filters as long term, passive, high-volume air samplers. J Environ Monit 10(4):474–81. doi:10.1039/b719316e CrossRefPubMedGoogle Scholar
  20. Štursa P, Uhlík O, Kurzawová V et al. (2009) Approaches for diversity analysis of cultivable and non-cultivable bacteria in real soil. Plant, Soil Environ 55(9):389–396Google Scholar
  21. Su C, Lei L, Duan Y et al. (2012) Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 93(3):993–1003. doi:10.1007/s00253-011-3800-7 CrossRefPubMedGoogle Scholar
  22. Timm M, Madsen AM, Hansen JV et al. (2009) Assessment of the total inflammatory potential of bioaerosols by using a granulocyte assay. Appl Environ Microbiol 75(24):7655–7662. doi:10.1128/AEM.00928-09 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Walser SM, Gerstner DG, Brenner B et al. (2015) Evaluation of exposure-response relationships for health effects of microbial bioaerosols - A systematic review. Int J Hyg Environ Health 218(7):577–589. doi:10.1016/j.ijheh.2015.07.004 CrossRefPubMedGoogle Scholar
  24. WHO World Health Organization. (2011). Report on the Burden of Endemic Health Care- Associated Infection Worldwide. Clean Care is Safer Care. Retrieved from http://apps.who.int/iris/bitstream/10665/80135/1/9789241501507_eng.pdf

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Research Center LEAF - Linking Landscape, Environment, Agriculture and Food - Instituto Superior de Agronomia, Lisbon UniversityLisbonPortugal
  2. 2.Research Group Environment & Health (GIAS), Lisbon School of Health Technology/Polytechnic Institute of LisbonLisbonPortugal
  3. 3.Lisbon School of Health Technology/Polytechnic Institute of Lisbon, Av. D. João II, lote 4.69.01, Parque das NaçõesLisbonPortugal
  4. 4.Centro Hospitalar Lisboa Ocidental, Hospital Egas Moniz, Microbiology and Molecular Biology LaboratoryLisbonPortugal

Personalised recommendations