Skip to main content

Abstract

Here we reviewed several factors involved in the emergence of antibiotic resistance. They are numerous, and the constant adaptation of microorganisms to the selective pressure exerted by antibiotics is extraordinary. The monitoring systems to assess antibiotic resistance levels and the extent of dissemination were highlighted. In addition, the success of spread of certain bacterial lineages and resistant mechanisms remains sometimes difficult to determine. The need to enlarge research in the area of antibiotic resistance was also stated, not only to better understand the dynamics of dissemination of resistance between different bacteria and different ecosystems, but also to enlarge the pharmaceutical pipeline of antibacterials against multidrug-resistant pathogens. It is manifest the severe consequences of antibiotic resistances to humans, animals and environment, constituting a global public health priority. In consequence, it should be tackled on all fronts in view to the essential concept of “One World-One Medicine-One Health.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berg G, Erlacher A, Smalla K et al (2014) Vegetable microbiomes: is there a connection among opportunistic infections, human health and our ‘gut feeling’? Microb Biotechnol 7:487–495

    Article  PubMed  PubMed Central  Google Scholar 

  • Berglund B (2015) Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect Ecol Epidemiol 5:28564

    Article  PubMed  Google Scholar 

  • Bien J, Sokolova O, Bozko P (2012) Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. Int J Nephrol 2012:681473

    Article  PubMed  PubMed Central  Google Scholar 

  • Blair JM, Webber MA, Baylay AJ et al (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51

    Article  CAS  PubMed  Google Scholar 

  • Bonomo RA (2000) Multiple antibiotic resistant bacteria in long-term-care facilities: an emerging problem in the practice of infectious diseases. Clin Infect Dis 31:1414–1422

    Article  CAS  PubMed  Google Scholar 

  • Brogan DM, Mossialos E (2016) A critical analysis of the review on antimicrobial resistance report and the infectious disease financing facility. Global Health 12:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Caniça M, Manageiro V, Jones-Dias D et al (2015) Current perspectives on the dynamics of antibiotic resistance in different reservoirs. Res Microbiol 166:594–600

    Article  PubMed  Google Scholar 

  • Catry B, Cavaleri M, Baptiste K et al (2015) Use of colistin-containing products within the European Union and European Economic Area (EU/EEA): development of resistance in animals and possible impact on human and animal health. Int J Antimicrob Agents 46:297–306

    Article  CAS  PubMed  Google Scholar 

  • Charani E, Tarrant C, Moorthy K et al (2017) Understanding antibiotic decision making in surgery – a qualitative analysis. Clin Microbiol Infect pii:51198-743X(17)30182-9

    Google Scholar 

  • Duarte A, Santos A, Manageiro V et al (2014) Human, food and animal Campylobacter spp. isolated in Portugal: high genetic diversity and antibiotic resistance rates. Int J Antimicrob Agents 44:306–313

    Article  CAS  PubMed  Google Scholar 

  • Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 6:25–64

    PubMed  PubMed Central  Google Scholar 

  • FAO/OIE/WHO (Food and Agriculture Organization of the United Nations, World Organisation for Animal Health, World Health Organization) (2016a) Antimicrobial resistance: a manual for developing national action plans. WHO, Geneva

    Google Scholar 

  • FAO/OIE/WHO (Food and Agriculture Organization of the United Nations, World Organisation for Animal Health, World Health Organization) (2016b) The FAO action plan on antimicrobial resistance 2016-2020: Supporting the food and agriculture sectors in implementing the Global Action Plan on Antimicrobial Resistance to minimize the impact of antimicrobial resistance. FAO, Rome

    Google Scholar 

  • Girlich D, Poirel L, Szczepanowski R et al (2012) Carbapenem-hydrolyzing GES-5-encoding gene on different plasmid types recovered from a bacterial community in a sewage treatment plant. Appl Environ Microbiol 78:1292–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkey PM (2015) Multidrug-resistant Gram-negative bacteria: a product of globalization. J Hosp Infect 89:241–247

    Article  CAS  PubMed  Google Scholar 

  • Hu F, Ahn C, O’Hara JA et al (2014) Faropenem disks for screening of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. J Clin Microbiol 52:3501–3502

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson AP, Woodford N (2013) Global spread of antibiotic resistance: the example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance. J Med Microbiol 62:499–513

    Article  CAS  PubMed  Google Scholar 

  • Jones BV, Sun F, Marchesi JR (2010) Comparative metagenomic analysis of plasmid encoded functions in the human gut microbiome. BMC Genomics 11:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones-Dias D, Manageiro V, Caniça M (2016a) Influence of agricultural practice on mobile bla genes: IncI1-bearing CTX-M, SHV, CMY and TEM in Escherichia coli from intensive farming soils. Environ Microbiol 18:260–272

    Article  CAS  PubMed  Google Scholar 

  • Jones-Dias D, Manageiro V, Graça R et al (2016b) QnrS1- and Aac(6’)-Ib-cr-producing Escherichia coli among isolates from animals of different sources: susceptibility and genomic characterization. Front Microbiol 7:671

    PubMed  PubMed Central  Google Scholar 

  • Jones-Dias D, Manageiro V, Ferreira E et al (2016c) Architecture of class 1, 2, and 3 integrons from Gram-negative bacteria recovered among fruits and vegetables. Front Microbiol 7:1400

    PubMed  PubMed Central  Google Scholar 

  • Kazimierczal KA, Scott KP, Kelly D et al (2009) Tetracycline resistome of the organic pig gut. Appl Environ Microbiol 75:1717–1722

    Article  Google Scholar 

  • Liu YY, Wang Y, Walsh TR et al (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168

    Article  PubMed  Google Scholar 

  • Manageiro V, Clemente L, Duarte S et al (2016). Draft genome sequence of an Escherichia coli strain isolated from a Gallus gallus broiler producing the novel CTX-M-166 variant. Genome Announc 4(5):e01029-16

    Google Scholar 

  • Manageiro V, Ferreira E, Caniça M et al (2014) GES-5 among the β-lactamases detected in ubiquitous bacteria isolated from aquatic environment samples. FEMS Microbiol Lett 351:64–69

    Article  CAS  PubMed  Google Scholar 

  • Manageiro V, Pinto M, Caniça M (2015c) Complete sequence of a bla OXA-48-harboring IncL plasmid from an Enterobacter cloacae clinical isolate. Genome Announc 3(5):e01076–15

    PubMed  PubMed Central  Google Scholar 

  • Manageiro V, Ferreira E, Almeida J et al (2015a) Predominance of KPC-3 in a survey for carbapenemase-producing Enterobacteriaceae in Portugal. Antimicrob Agents Chemother 59:3588–3592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manageiro V, Sampaio DA, Pereira P et al (2015b) Draft genome sequence of the first NDM-1-producing Providencia stuartii isolated in Portugal. Genome Announc 3(5):e01077–15

    PubMed  PubMed Central  Google Scholar 

  • Marti E, Jofre J, Balcazar JL (2013) Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant. PLoS One 8:e78906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathers AJ, Peirano G, Pitout JD (2015) The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 28:565–591

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendonça N, Leitão J, Manageiro V et al (2007) Spread of extended-spectrum β-lactamase CTX-M-producing Escherichia coli clinical isolates in community and nosocomial environments in Portugal. Antimicrob Agents Chemother 51:1946–1955

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrill HJ, Pogue JM, Kaye KS, LaPlante KL (2015) Treatment options for carbapenem-resistant Enterobacteriaceae infections. Open Forum Infect Dis 2:ofv050

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicolas-Chanoine MH, Bertrand X, Madec JY (2014) Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 27:543–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolle LE, Strausbaugh LJ, Garibaldi RA (1996) Infections and antibiotic resistance in nursing homes. Clin Microbiol Rev 9:1–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nordmann P, Poirel L (2016) Plasmid-mediated colistin resistance: an additional antibiotic resistance menace. Clin Microbiol Infect 22:398–400

    Article  CAS  PubMed  Google Scholar 

  • O’Neill J (2014) The review on antimicrobial resistance. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. http://www.jpiamr.eu/wp-content/uploads/2014/12/AMR-Review-Paper-Tackling-a-crisis-for-the-health-and-wealth-of-nations_1-2.pdf

  • O’Neill J (2017) The review on antimicrobial resistance. tackling drug-resistant infections globally: final report and recommendations. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf

  • Pendleton JN, Gorman SP, Gilmore BF (2013) Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 11:297–308

    Article  CAS  PubMed  Google Scholar 

  • Poole K (2007) Efflux pumps as antimicrobial resistance mechanisms. Ann Med 39:162–176

    Article  CAS  PubMed  Google Scholar 

  • Rawson TM, Moore LS, Hernandez B et al (2017) A systematic review of clinical decision support systems for antimicrobial management: are we failing to investigate these interventions appropriately? Clin Microbiol Infect pii: S1198-743X(17)30125-8

    Google Scholar 

  • Robert J, Pantel A, Merens A et al (2017) Development of an algorithm for phenotypic screening of carbapenemase producing Enterobacteriaceae in the routine laboratory. BMC Infect Dis 17:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Robilotti E, Holubar M, Nahrgang S et al (2017) Educating front-line clinicians about antimicrobial resistance. Lancet Infect Dis 17:257–258

    Article  PubMed  PubMed Central  Google Scholar 

  • Roca I, Akova M, Baquero F et al (2015) The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 6:22–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers BA, Aminzadeh Z, Hayashi Y et al (2011) Country-to-country transfer of patients and the risk of multi-resistant bacterial infection. Clin Infect Dis 53:49–56

    Article  PubMed  Google Scholar 

  • Salgueiro V, Manageiro V, Jones-Dias D et al (2016) Antibiotic resistant bacteria from air samples collected in nursing homes. 26th SETAC (Society of Environmental Toxicology and Chemistry) Europe Annual Meeting, Nantes, France

    Google Scholar 

  • Schürch AC, van Schaik W (2017) Challenges and opportunities for whole-genome sequencing-based surveillance of antibiotic resistance. Ann N Y Acad Sci 1388:108–120

    Article  PubMed  Google Scholar 

  • Shimose LA, Doi Y, Bonomo RA et al (2015) Contamination of ambient air with Acinetobacter baumannii on consecutive inpatient days. J Clin Microbiol 53:2346–2348

    Article  PubMed  PubMed Central  Google Scholar 

  • Strachan CR, Davies J (2017) The whys and wherefores of antibiotic resistance. Cold Spring Harb Perspect Med 7:a025171

    Article  PubMed  Google Scholar 

  • Szczepanowski R, Linke B, Krahn I et al (2009) Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology 155:2306–2319

    Article  CAS  PubMed  Google Scholar 

  • Tacconelli E, Cataldo MA, Dancer SJ et al (2014) ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin Microbiol Infect 20(S1):1–55

    Article  PubMed  Google Scholar 

  • Thanner S, Drissner D, Walsh F (2016) Antimicrobial resistance in agriculture. MBio 7:e02227-15

    Article  PubMed  PubMed Central  Google Scholar 

  • van Buul LW, Steen JT, Veenhuizen RB et al (2012) Antibiotic use and resistance in long term care facilities. J Am Med Dir Assoc 13:568. e1–e113

    PubMed  Google Scholar 

  • van der Bij AK, Pitout JDD (2012) The role of international travel in the worldwide spread of multiresistant Enterobacteriaceae. J Antimicrob Chemother 67:2090–2100

    Article  PubMed  Google Scholar 

  • Watkins RR, Smith TC, Bonomo RA (2016) On the path to untreatable infections: colistin use in agriculture and the end of ‘last resort’ antibiotics. Expert Rev Anti Infect Ther 14:785–788

    Article  CAS  PubMed  Google Scholar 

  • WHO (2014) Antimicrobial resistance: an emerging water, sanitation and hygiene issue. http://apps.who.int/iris/bitstream/10665/204948/1/WHO_FWC_WSH_14.7_eng.pdf?ua=1

  • WHO (2015) Global action plan on antimicrobial resistance. http://www.wpro.who.int/entity/drug_resistance/resources/global_action_plan_eng.pdf

  • WHO (2017) Global priority list of antibiotic resistant bacteria to guide research, discovery, and development of new antibiotics. http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf

  • Wright GW, Sutherland AD (2007) New strategies for combating multidrug-resistant bacteria. Trends Mol Med 13:260–267

    Article  CAS  PubMed  Google Scholar 

  • Zanger P (2014) Methicillin-resistant Staphylococcus aureus and intercontinental travel – “bad bugs on the move!”. J Travel Med 21:225–227

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Fundação para a Ciência e a Tecnologia (FCT) for project grant PEst-OE/AGR/UI0211/2011-2014, Strategic Project UI211-2011-2014. V. Manageiro was supported by FCT fellowship (grant SFRH/BPD/77486/2011), financed by the European Social Funds (COMPETE-FEDER) and national funds of the Portuguese Ministry of Education and Science (POPH-QREN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Caniça .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Manageiro, V., Salgueiro, V., Ferreira, E., Caniça, M. (2017). Bacterial Resistances. In: Viegas, C., Viegas, S., Gomes, A., Täubel, M., Sabino, R. (eds) Exposure to Microbiological Agents in Indoor and Occupational Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-61688-9_20

Download citation

Publish with us

Policies and ethics